
Oracle® Rdb for OpenVMS

Table of Contents
Oracle® Rdb for OpenVMS..1

Release Notes...2

September 2005...3

Contents...4

Preface..5

Purpose of This Manual...6

Intended Audience..7

Document Structure..8

Chapter 1Installing Oracle Rdb Release 7.0.8.2..9

1.1 Requirements...10

1.2 Invoking VMSINSTAL ..11

1.3 Stopping the Installation..12

1.4 After Installing Oracle Rdb...13

1.5 Spurious SYSVERDIF Message During Installation..14

1.6 Maximum OpenVMS Version Check Added...15

Chapter 2Software Errors Fixed in Oracle Rdb Release 7.0.8.2..16

2.1 Software Errors Fixed That Apply to All Interfaces...17
2.1.1 Journals Not Initialized After Backup if Backing Up to Tape Device...17
2.1.2 Wrong Result From UNION Query With Outer Join Leg..17
2.1.3 COSI_MEM_FREE_VMLIST Bugcheck with Vertical Partitioning..24
2.1.4 Bugcheck from INSERT with Partition Index..24
2.1.5 Wrong Result from Constant View Column...25
2.1.6 Wrong Result from UNION View Query with NOT STARTING WITH Clause.......................27
2.1.7 Unexpected Bugcheck when Formatting Illegal Date/Time Value..29
2.1.8 Wrong Result by Query with Constant Column Defined in a View...30
2.1.9 Bugchecks or Corruption in Indexes of TYPE IS SORTED RANKED......................................32

2.2 Oracle RMU Errors Fixed...35
2.2.1 RMU /UNLOAD Output File Maximum Record Size...35

Oracle® Rdb for OpenVMS

i

Table of Contents
2.3 LogMiner Errors Fixed..36

2.3.1 RMU /UNLOAD /AFTER_JOURNAL Field Order Clarification...36

Chapter 3Software Errors Fixed in Oracle Rdb Release 7.0.8.1..38

3.1 Software Errors Fixed That Apply to All Interfaces...39
3.1.1 Problem with Rdb 7.0.8 and VMS Versions Below V7.1..39
3.1.2 Wrong Results Generated by Query With Common Boolean Elements......................................39
3.1.3 Query With Shared Expressions in OR Predicates Returns Wrong Result..................................40
3.1.4 Various Errors or Corruption of Ranked Indexes...42
3.1.5 Wrong Result From Query With Common Join Booleans in OR..43
3.1.6 Wrong Result Selecting From a Derived Table of UNION Clause..44
3.1.7 Incorrect Foreign Key Constraint Behavior on Update..46
3.1.8 Bugchecks in PSII2SPLITNODE When Using Ranked Indexes...47
3.1.9 Connection Name Longer than 31 Characters Mishandled..48

3.2 SQL Errors Fixed...49
3.2.1 Dynamic SQL Rounds Results from Division Operator...49

3.3 LogMiner Errors Fixed..50
3.3.1 RMU /UNLOAD /AFTER_JOURNAL Incorrect Settings in Null Bit Vector............................50

Chapter 4Enhancements Provided in Oracle Rdb Release 7.0.8.1...51

4.1 Enhancements Provided in Oracle Rdb Release 7.0.8.1..52
4.1.1 New DEFAULTS Qualifier Added to RMU Extract..52

Chapter 5Enhancements Provided in Oracle Rdb Release 7.0.8..54

5.1 Enhancements Provided in Oracle Rdb Release 7.0.8...55
5.1.1 Support for OpenVMS Version 8.2..55
5.1.2 RDM$BIND_SNAP_QUIET_POINT Logical Reinstated...55
5.1.3 RMU Unload After_Journal/Ignore Old_Version Keyword..56
5.1.4 New Features in RMU Extract..57
RMU Extract Command..57
DESCRIPTION...57
COMMAND PARAMETERS...58

root−file−spec..58
COMMAND QUALIFIERS..58

Items[=item−list]...58
Language=lang−name...64
Log[=log−file]...65
Nolog...65
Options=options−list...65
Output=[out−file]..70
Nooutput..70
Transaction_Type[=(transaction_mode,options,...)]...71

Usage Notes...72

Oracle® Rdb for OpenVMS

ii

Table of Contents
5.1 Enhancements Provided in Oracle Rdb Release 7.0.8

Examples..75

Chapter 6Enhancements Provided in Previous Releases..85

6.1 Enhancements Provided in Oracle Rdb Release 7.0.7.2..86
6.1.1 Rdb Optional Site−Specific Startup Procedure..86
6.1.2 Oracle Rdb SGA API..86
6.1.3 CHRONO_FLAG Replaces Older CRONO_FLAG Keyword..87

6.2 Enhancements Provided in Oracle Rdb Release 7.0.7.1..88
6.2.1 RDM$BIND_SNAP_QUIET_POINT Logical No Longer Used...88
6.2.2 Determining Which Oracle Rdb Options Are Installed..88
6.2.3 New Procedure RDB$IMAGE_VERSIONS.COM..89

Chapter 7Documentation Corrections..90

7.1 Documentation Corrections...91
7.1.1 Database Server Process Priority Clarification...91
7.1.2 Waiting for Client Lock Message...91
7.1.3 Clarification of PREPARE Statement Behavior...92
7.1.4 SQL EXPORT Does Not Save Some Database Attributes...93
7.1.5 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database Parameter...................93
7.1.6 New Request Options for RDO, RDBPRE and RDB$INTERPRET...94
7.1.7 Missing Descriptions of RDB$FLAGS from HELP File...96
7.1.8 A Way to Find the Transaction Type of a Particular Transaction Within the Trace Database....98
7.1.9 Clarification of SET FLAGS Option DATABASE_PARAMETERS...99
7.1.10 Additional Information About Detached Processes..99
7.1.11 The Halloween Problem...100
7.1.12 RDM$BIND_MAX_DBR_COUNT Documentation Clarification...102
7.1.13 RMU /UNLOAD /AFTER_JOURNAL NULL Bit Vector Clarification.................................102
7.1.14 Location of Host Source File Generated by the SQL Precompilers...105
7.1.15 Suggestion to Increase GH_RSRVPGCNT Removed..106
7.1.16 Clarification of the DDLDONOTMIX Error Message...107
7.1.17 Compressed Sorted Index Entry Stored in Incorrect Storage Area..107
7.1.18 Partition Clause is Optional on CREATE STORAGE MAP...109
7.1.19 Oracle Rdb Logical Names...110
7.1.20 Documentation Error in Oracle Rdb Guide to Database Performance and Tuning..................110
7.1.21 SET FLAGS Option IGNORE_OUTLINE Not Available...110
7.1.22 SET FLAGS Option INTERNALS Not Described..111
7.1.23 Documentation for VALIDATE_ROUTINE Keyword for SET FLAGS................................111
7.1.24 Documentation for Defining the RDBSERVER Logical Name...112
7.1.25 Undocumented SET Commands and Language Options..112

7.1.25.1 QUIET COMMIT Option...113
7.1.25.2 COMPOUND TRANSACTIONS Option...114

7.1.26 Undocumented Size Limit for Indexes with Keys Using Collating Sequences........................114
7.1.27 Changes to RMU/REPLICATE AFTER/BUFFERS Command..115
7.1.28 Change in the Way RDMAIJ Server is Set Up in UCX...116

Oracle® Rdb for OpenVMS

iii

Table of Contents
7.1 Documentation Corrections

7.1.29 CREATE INDEX Supported for Hot Standby...116
7.1.30 Dynamic OR Optimization Formats...117

Chapter 8Known Problems and Restrictions...118

8.1 Oracle Rdb Considerations..119
8.1.1 Some SQL92 Dialect−required Warnings Not Delivered..119
8.1.2 Partitioned Index with Descending Column and Collating Sequence..120
8.1.3 RDMS−E−RTNSBC_INITERR, Cannot Init External Routine Server Site Executor..............121
8.1.4 AIJ Log Server Process May Loop Or Bugcheck...122
8.1.5 Optimization of Check Constraints...122
8.1.6 Dynamic Optimization Estimation Incorrect for Ranked Indices...125
8.1.7 Running Rdb Applications With the VMS Heap Analyzer..126
8.1.8 RMU/RECOVER/AREA Needs Area List...126
8.1.9 PAGE TRANSFER VIA MEMORY Disabled..126
8.1.10 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors..126
8.1.11 Behavior Change in 'With System Logical_Name Translation' Clause...................................128
8.1.12 Carry−Over Locks and NOWAIT Transactions Clarification..128
8.1.13 Strict Partitioning May Scan Extra Partitions...129
8.1.14 Exclusive Access Transactions May Deadlock With RCS Process..129
8.1.15 Oracle Rdb and OpenVMS ODS−5 Volumes..129
8.1.16 Clarification of the USER Impersonation Provided by the Oracle Rdb Server........................130
8.1.17 Index STORE Clause WITH LIMIT OF Not Enforced in Single Partition Map.....................131
8.1.18 Unexpected NO_META_UPDATE Error Generated by DROP MODULE ... CASCADE
 When Attached by PATHNAME...131
8.1.19 Application and Oracle Rdb Both Using SYS$HIBER..132
8.1.20 IMPORT Unable to Import Some View Definitions..133
8.1.21 AIJSERVER Privileges..133
8.1.22 Lock Remastering and Hot Standby...134
8.1.23 RDB_SETUP Privilege Error...134
8.1.24 Starting Hot Standby on Restored Standby Database May Corrupt Database.........................135
8.1.25 Restriction on Compound Statement Nesting Levels...135
8.1.26 Back Up All AIJ Journals Before Performing a Hot Standby Switchover Operation..............136
8.1.27 Concurrent DDL and Read−Only Transaction on the Same Table Not Compatible................136
8.1.28 Oracle Rdb and the SRM_CHECK Tool..137
8.1.29 Oracle RMU Checksum_Verification Qualifier...138
8.1.30 Do Not Use HYPERSORT with RMU/OPTIMIZE/AFTER_JOURNAL (Alpha)..................138
8.1.31 Restriction on Using /NOONLINE with Hot Standby...138
8.1.32 SELECT Query May Bugcheck with PSII2SCANGETNEXTBBCDUPLICATE Error.........139
8.1.33 DBAPack for Windows 3.1 is Deprecated...139
8.1.34 Determining Mode for SQL Non−Stored Procedures..139
8.1.35 DROP TABLE CASCADE Results in %RDB−E−NO_META_UPDATE Error....................141
8.1.36 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL...142
8.1.37 Interruptions Possible when Using Multistatement or Stored Procedures................................143
8.1.38 Row Cache Not Allowed on Standby Database While Hot Standby Replication Is Active.....144
8.1.39 Hot Standby Replication Waits when Starting if Read−Only Transactions Running..............144
8.1.40 Error when Using the SYS$LIBRARY:SQL_FUNCTIONS70.SQL Oracle Functions

Oracle® Rdb for OpenVMS

iv

Table of Contents
8.1 Oracle Rdb Considerations

 Script...144
8.1.41 DEC C and Use of the /STANDARD Switch...145
8.1.42 Excessive Process Page Faults and Other Performance Considerations During Oracle Rdb
 Sorts..146
8.1.43 Performance Monitor Column Mislabeled...147
8.1.44 Restriction Using Backup Files Created Later than Oracle Rdb Release 7.0.1........................147
8.1.45 RMU Backup Operations and Tape Drive Types...147
8.1.46 Use of Oracle Rdb from Shared Images...148
8.1.47 Restriction Added for CREATE STORAGE MAP on Table with Data..................................148
8.1.48 Oracle Rdb Workload Collection Can Stop Hot Standby Replication.....................................149
8.1.49 RMU Convert Command and System Tables...150
8.1.50 Converting Single−File Databases..150
8.1.51 Restriction when Adding Storage Areas with Users Attached to Database.............................151
8.1.52 Support for Single−File Databases to be Dropped in a Future Release....................................151
8.1.53 DECdtm Log Stalls...151
8.1.54 Cannot Run Distributed Transactions on Systems with DECnet/OSI and OpenVMS
 Alpha Version 6.1 or OpenVMS VAX Version 6.0...152
8.1.55 Multiblock Page Writes May Require Restore Operation..153
8.1.56 Replication Option Copy Processes Do Not Process Database Pages Ahead of an
 Application..153
8.1.57 SQL Does Not Display Storage Map Definition After Cascading Delete of Storage Area.....154
8.1.58 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE.....................................154
8.1.59 Different Methods of Limiting Returned Rows from Queries..154
8.1.60 Suggestions for Optimal Usage of the SHARED DATA DEFINITION Clause for Parallel
 Index Creation...156
8.1.61 Side Effect when Calling Stored Routines..157
8.1.62 Considerations when Using Holdable Cursors...158
8.1.63 INCLUDE SQLDA2 Statement Is Not Supported for SQL Precompiler for PL/I in Oracle
 Rdb Release 5.0 or Higher..159
8.1.64 SQL Pascal Precompiler Processes ARRAY OF RECORD Declarations Incorrectly.............159
8.1.65 RMU Parallel Backup Command Not Supported for Use with SLS..160

8.2 Oracle CDD/Repository Restrictions..161
8.2.1 Oracle CDD/Repository Compatibility with Oracle Rdb Features...161
8.2.2 Multischema Databases and CDD/Repository..162
8.2.3 Interaction of Oracle CDD/Repository Release 5.1 and Oracle RMU Privileges Access
 Control Lists...162

8.2.3.1 Installing the Corrected CDDSHR Images...164
8.2.3.2 CDD Conversion Procedure..164

Oracle® Rdb for OpenVMS

v

Oracle® Rdb for OpenVMS

Oracle® Rdb for OpenVMS 1

Release Notes
Release 7.0.8.2

Release Notes 2

September 2005
Oracle Rdb Release Notes, Release 7.0.8.2 for OpenVMS

Copyright © 1984, 2005 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these Programs,
no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency−specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement,
and, to the extent applicable, the additional rights set forth in FAR 52.227−19, Commercial Computer
Software−−−Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail−safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and Hot Standby, LogMiner for Rdb, Oracle CDD/Repository, Oracle
CODASYL DBMS, Orale Expert, Oracle Rdb, Oracle RMU, Oracle RMUwin, Oracle SQL/Services, Oracle
Trace, and Rdb7 are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third−party Web sites. You bear
all risks associated with the use of such content. If you choose to purchase any products or services from a
third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the
quality of third−party products or services, or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with
any third party.

September 2005 3

Contents

Contents 4

Preface

Preface 5

Purpose of This Manual
This manual contains release notes for Oracle Rdb Release 7.0.8.2. The notes describe changed and enhanced
features; upgrade and compatibility information; new and existing software problems and restrictions; and
software and documentation corrections. These release notes cover both Oracle Rdb for OpenVMS Alpha and
Oracle Rdb for OpenVMS VAX, which are referred to by their abbreviated name, Oracle Rdb.

Purpose of This Manual 6

Intended Audience
This manual is intended for use by all Oracle Rdb users. Read this manual before you install, upgrade, or use
Oracle Rdb Release 7.0.8.2.

Intended Audience 7

Document Structure
This manual consists of eight chapters:

Chapter 1 Describes how to install Oracle Rdb Release 7.0.8.2.

Chapter 2 Describes software errors corrected in Oracle Rdb Release 7.0.8.2.

Chapter 3 Describes software errors corrected in Oracle Rdb Release 7.0.8.1.

Chapter 4 Describes enhancements introduced in Oracle Rdb Release 7.0.8.1.

Chapter 5 Describes enhancements introduced in Oracle Rdb Release 7.0.8.

Chapter 6 Describes enhancements introduced in releases prior to Oracle Rdb Release 7.0.8.

Chapter 7 Provides information not currently available in the Oracle Rdb documentation set.

Chapter 8 Describes problems, restrictions, and workarounds known to exist in Oracle Rdb Release 7.0.8.2.

Document Structure 8

Chapter 1
Installing Oracle Rdb Release 7.0.8.2
This software update is installed using the standard OpenVMS Install Utility.

NOTE

Beginning with Release 7.0.6.2 of Oracle Rdb, all new Oracle Rdb kits released are full
kits. Oracle will no longer ship partial kits (known as ECOs in the past). Therefore, there is
no need to install any prior release of Oracle Rdb when installing new Rdb kits.

Chapter 1Installing Oracle Rdb Release 7.0.8.2 9

1.1 Requirements
The following conditions must be met in order to install this software update:

Oracle Rdb must be shutdown before you install this update kit. That is, the command file
SYS$STARTUP:RMONSTOP(70).COM should be executed before proceeding with this installation.
If you have an OpenVMS cluster, you must shutdown all versions of Oracle Rdb on all nodes in the
cluster before proceeding.

•

The installation requires approximately 130,000 free blocks on your system disk for OpenVMS VAX
systems; 240,000 blocks for OpenVMS Alpha systems.

•

1.1 Requirements 10

1.2 Invoking VMSINSTAL
To start the installation procedure, invoke the VMSINSTAL command procedure:

@SYS$UPDATE:VMSINSTAL variant−name device−name OPTIONS N

variant−name

The variant names for the software update for Oracle Rdb Release 7.0.8.2 are:

RDBSE2H070 for Oracle Rdb for OpenVMS VAX standard version.•
RDBASE2H070 for Oracle Rdb for OpenVMS Alpha standard version.•
RDBMVE2H070 for Oracle Rdb for OpenVMS VAX multiversion.•
RDBAMVE2H070 for Oracle Rdb for OpenVMS Alpha multiversion.•

device−name

Use the name of the device on which the media is mounted.

If the device is a disk drive, such as a CD−ROM reader, you also need to specify a directory. For
CD−ROM distribution, the directory name is the same as the variant name. For example:

DKA400:[RDBAMVE2H070.KIT]

•

If the device is a magnetic tape drive, you need to specify only the device name. For example:

MTA0:

•

OPTIONS N

This parameter prints the release notes.

The following example shows how to start the installation of the Alpha multiversion kit on device MTA0: and
print the release notes:

$ @SYS$UPDATE:VMSINSTAL RDBAMVE2H070 MTA0: OPTIONS N

1.2 Invoking VMSINSTAL 11

1.3 Stopping the Installation
To stop the installation procedure at any time, press Ctrl/Y. When you press Ctrl/Y, the installation procedure
deletes all files it has created up to that point and exits. You can then start the installation again.

If VMSINSTAL detects any problems during the installation, it notifies you and a prompt asks if you want to
continue. You might want to continue the installation to see if any additional problems occur. However, the
copy of Oracle Rdb installed will probably not be usable.

1.3 Stopping the Installation 12

1.4 After Installing Oracle Rdb
This update provides a new Oracle Rdb Oracle TRACE facility definition. Any Oracle TRACE selections that
reference Oracle Rdb will need to be redefined to reflect the new facility version number for the updated
Oracle Rdb facility definition, "RDBVMSV7.0−82".

If you have Oracle TRACE installed on your system and you would like to collect for Oracle Rdb, you must
insert the new Oracle Rdb facility definition included with this update kit.

The installation procedure inserts the Oracle Rdb facility definition into a library file called
EPC$FACILITY.TLB. To be able to collect Oracle Rdb event−data using Oracle TRACE, you must move
this facility definition into the Oracle TRACE administration database. Perform the following steps:

Extract the definition from the facility library to a file (in this case, RDBVMS.EPC$DEF).

$ LIBRARY /TEXT /EXTRACT=RDBVMSV7.0−82 −
_$ /OUT=RDBVMS.EPC$DEF SYS$SHARE:EPC$FACILITY.TLB

1.

Insert the facility definition into the Oracle TRACE administration database.

$ COLLECT INSERT DEFINITION RDBVMS.EPC$DEF /REPLACE

2.

Note that if you are installing the multiversion variant of Oracle Rdb, the process executing the INSERT
DEFINITION command must use the version of Oracle Rdb that matches the version used to create the
Oracle TRACE administration database or the INSERT DEFINITION command will fail.

1.4 After Installing Oracle Rdb 13

1.5 Spurious SYSVERDIF Message During
Installation
When installing Oracle Rdb on an OpenVMS V8.2 Alpha system, depending on the previous version of
Oracle Rdb installed and how Oracle Rdb was shut down prior to the installation, a message similar to the
following may be displayed during the installation procedure:

%INSTALL−E−FAIL, failed to REPLACE entry for
DISK$VMS82:<SYS0.SYSCOMMON.SYSLIB>RDMXSMP70.EXE
−INSTALL−E−SYSVERDIF, system version mismatch − please relink

This message may be safely ignored. Using the RMONSTOP.COM (for standard installations) or
RMONSTOP70.COM (for multi−version installations) procedure to shut down Oracle Rdb prior to the
installation may help avoid the message.

1.5 Spurious SYSVERDIF Message During Installation 14

1.6 Maximum OpenVMS Version Check Added
As of Oracle Rdb Release 7.0.1.5, a maximum OpenVMS version check has been added to the product.
Oracle Rdb has always had a minimum OpenVMS version requirement. With 7.0.1.5 and for all future Oracle
Rdb releases, we have expanded this concept to include a maximum VMS version check and a maximum
supported processor hardware check. The reason for this check is to improve product quality.

OpenVMS Version 8.2−x is the maximum supported version of OpenVMS.

As of Oracle Rdb Release 7.0.3, the Alpha EV6 processor is supported. As of Oracle Rdb Release 7.0.5, the
Alpha EV67 processor is supported. As of Oracle Rdb Release 7.0.6, the Alpha Wildfire processor is
supported (see http://metalink.oracle.com for specifics on which Wildfire configurations are supported). As of
Oracle Rdb Release 7.0.6.2, the Alpha EV68 processor is supported. As of Oracle Rdb Release 7.0.7, the
Alpha EV7 processor is supported.

The check for the OpenVMS operating system version and supported hardware platforms is performed both at
installation time and at runtime. If either a non−certified version of OpenVMS or hardware platform is
detected during installation, the installation will abort. If a non−certified version of OpenVMS or hardware
platform is detected at runtime, Oracle Rdb will not start.

1.6 Maximum OpenVMS Version Check Added 15

Chapter 2
Software Errors Fixed in Oracle Rdb Release
7.0.8.2
This chapter describes software errors that are fixed by Oracle Rdb Release 7.0.8.2.

Chapter 2Software Errors Fixed in Oracle Rdb Release 7.0.8.2 16

2.1 Software Errors Fixed That Apply to All
Interfaces

2.1.1 Journals Not Initialized After Backup if Backing Up to
Tape Device

Bug 2808539

If after image journal backups were being done to tape and the AIJs being backed up were circular AIJs, the
backed up journal would not get properly initialized. This could lead to various issues such as journaling
being shutdown with a "journal is not empty" error. When that occurred, the journal state displayed by
RMU/DUMP/HEADER=JOURNAL would show the following lines of output:

 File is inaccessible
 journal has been made inaccessible by system
 journal is not empty

Other symptoms were also possible. The database recovery process (DBR) could fail with a bugcheck in
DBR$RECOVER_ALL. Attempts to recover a database using an existing journal that was not properly
re−initialized could fail with AIJCORRUPT errors. For example:

%RMU−W−AIJCORRUPT, journal entry 1451795/3364123 contains a new AIJBL that
doesn't have the start flag set

This problem was introduced in Oracle Rdb Release 7.0.7.3.

The problem can be avoided by backing up the journals to a disk destination.

This problem has been corrected in Oracle Rdb Release 7.0.8.2.

2.1.2 Wrong Result From UNION Query With Outer Join Leg

Bug 4392374

The following query should find one row.

set flags 'strategy,detail';
SELECT sec_id, busdate, tc_code
FROM (SELECT
 SP_sec_id,
 SP_busdate,
 SP_tc_code,
 SP_rlc_code,
 SP_stc_id,
 SP_part_id
FROM
 (SELECT
 SEC.sec_id,
 SEC.sec_sub_id,
 ABD.busdate,

2.1 Software Errors Fixed That Apply to All Interfaces 17

 STD.tc_code,
 STD.rlc_code,
 STD.stc_id,
 OPA.part_id
 FROM STD STD,
 ABD ABD,
 OPA OPA,
 RLC RLC,
 STC STC,
 SEC SEC
 WHERE SEC.es_date <= ABD.busdate
 AND SEC.ee_date >= ABD.busdate
 AND SEC.inst_code = 1
 AND STD.es_date <= ABD.busdate
 AND STD.ee_date >= ABD.busdate
 AND STD.sec_id = SEC.sec_id
 AND OPA.sec_id = SEC.sec_id
 AND STD.rlc_code = RLC.rlc_code
 AND RLC.es_date <= ABD.busdate
 AND RLC.ee_date >= ABD.busdate
 AND STD.stc_id = STC.stc_id
 AND STC.es_date <= ABD.busdate
 AND STC.ee_date >= ABD.busdate
) AS SP
 (SP_sec_id,
 SP_sec_sub_id,
 SP_busdate,
 SP_tc_code,
 SP_rlc_code,
 SP_stc_id,
 SP_part_id
)
 LEFT OUTER JOIN
 (SELECT
 DIV1.shr_id,
 DIV1.ex_div_date,
 DIV1.div_cur_code,
 SUM(DIV1.div_value)
 FROM
 DIV DIV1,
 ABD ABD1,
 SEC SEC1,
 STD STD1
 WHERE DIV1.ex_div_date = ABD1.busdate
 AND DIV1.div_cur_code = STD1.tc_code
 AND STD1.es_date <= ABD1.busdate
 AND STD1.ee_date >= ABD1.busdate
 AND SEC1.sec_sub_id = DIV1.shr_id
 AND STD1.sec_id = SEC1.sec_id
 AND SEC1.es_date <= ABD1.busdate
 AND SEC1.ee_date >= ABD1.busdate
 AND SEC1.inst_code = 1
 GROUP BY
 DIV1.shr_id,
 DIV1.ex_div_date,
 DIV1.div_cur_code
) AS DIVSEC
 (DIVSEC_shr_id,
 DIVSEC_ex_div_date,
 DIVSEC_div_cur_code,
 DIVSEC_div_value)
 ON SP_sec_sub_id = DIVSEC_shr_id AND

Oracle® Rdb for OpenVMS

2.1 Software Errors Fixed That Apply to All Interfaces 18

 DIVSEC_div_cur_code = SP_tc_code AND
 DIVSEC_ex_div_date = SP_busdate
UNION ALL
 SELECT
 SEC.sec_id,
 ABD.busdate,
 STD.tc_code,
 STD.rlc_code,
 STD.stc_id,
 OPA.part_id
 FROM STD STD,
 SEC SEC,
 OPA OPA,
 ABD ABD,
 RLC RLC,
 STC STC
 WHERE SEC.es_date <= ABD.busdate
 AND SEC.ee_date >= ABD.busdate
 AND SEC.inst_code <> 1
 AND STD.es_date <= ABD.busdate
 AND STD.ee_date >= ABD.busdate
 AND STD.sec_id = SEC.sec_id
 AND OPA.sec_id = SEC.sec_id
 AND STD.rlc_code = RLC.rlc_code
 AND RLC.es_date <= ABD.busdate
 AND RLC.ee_date >= ABD.busdate
 AND STD.stc_id = STC.stc_id
 AND STC.es_date <= ABD.busdate
 AND STC.ee_date >= ABD.busdate
)
 as OM_STATIC_VIEW (
 sec_id,
 busdate,
 tc_code,
 rlc_code,
 stc_id,
 part_id
)
WHERE sec_id = 32978 AND busdate = '24−MAY−2005';
Tables:
 0 = STD
 1 = ABD
 2 = OPA
 3 = RLC
 4 = STC
 5 = SEC
 6 = DIV
 7 = ABD
 8 = SEC
 9 = STD
 10 = STD
 11 = SEC
 12 = OPA
 13 = ABD
 14 = RLC
 15 = STC
Conjunct: (<mapped field> = 32978) AND
 (<mapped field> = '24−MAY−2005')
Merge of 1 entries
 Merge block entry 1
 Merge of 2 entries
 Merge block entry 1

Oracle® Rdb for OpenVMS

2.1 Software Errors Fixed That Apply to All Interfaces 19

 Conjunct: 5.sec_id = 32978
 Conjunct: 1.busdate = '24−MAY−2005'
 Conjunct: 5.sec_id = 32978 <== See Note1
 Conjunct: 1.busdate = '24−MAY−2005'
 Match (Left Outer Join) <== See Note2
 Outer loop
 Sort: 1.busdate(a), 0.tc_code(a),
 5.sec_sub_id(a) <== See Note3
 Merge of 1 entries
 Merge block entry 1
 Cross block of 6 entries
 Cross block entry 1
 Conjunct: 1.busdate = '24−MAY−2005'
 Index only retrieval of relation 1:ABD
 Index name ABD_U_PRM [1:1] Direct lookup
 Keys: <mapped field> = '24−MAY−2005'
 Cross block entry 2
 Conjunct: 4.es_date <= 1.busdate
 Conjunct: 4.ee_date >= 1.busdate
 Get Retrieval by index of relation 4:STC
 Index name STC_U_PRM [0:0]
 Cross block entry 3
 Conjunct: 0.es_date <= 1.busdate
 Conjunct: 0.ee_date >= 1.busdate
 Get
 Retrieval by index of relation 0:STD
 Index name STD_U_FRG_7 [1:1]
 Keys: 0.stc_id = 4.stc_id
 Cross block entry 4
 Conjunct: 5.ee_date >= 1.busdate
 Get Retrieval by index of relation 5:SEC <== See Note2
 Index name SEC_U_FRG_7 [2:3]
 Keys: (5.inst_code = 1) AND (0.sec_id =
 5.sec_id) AND (5.es_date <=
 1.busdate)
 Bool: 5.sec_id = 32978
 Cross block entry 5
 Conjunct: 3.ee_date >= 1.busdate
 Get Retrieval by index of relation 3:RLC
 Index name RLC_U_PRM [1:2]
 Keys: (0.rlc_code = 3.rlc_code)
 AND (3.es_date <= 1.busdate)
 Cross block entry 6
 Get Retrieval by index of relation 2:OPA
 Index name OPA_U_PRM [1:1] Direct lookup
 Keys: 2.sec_id = 5.sec_id
 Inner loop
 Temporary relation
 Sort: 6.ex_div_date(a), 6.div_cur_code(a), 6.shr_id(a)
 Merge of 1 entries
 Merge block entry 1
 Aggregate: 0:SUM (6.div_value)
 Sort: 6.shr_id(a), 6.ex_div_date(a), 6.div_cur_code
 (a)
 Cross block of 4 entries
 Cross block entry 1
 Index only retrieval of relation 7:ABD
 Index name ABD_U_PRM [0:0]
 Cross block entry 2
 Get Retrieval by index of relation 6:DIV
 Index name DIV_U_ALT_1 [1:1]
 Keys: 6.ex_div_date = 7.busdate

Oracle® Rdb for OpenVMS

2.1 Software Errors Fixed That Apply to All Interfaces 20

 Cross block entry 3
 Conjunct: 8.ee_date >= 7.busdate
 Conjunct: 8.inst_code = 1
 Get Retrieval by index of relation 8:SEC
 Index name SEC_U_FRG_8 [1:2]
 Keys: (8.sec_sub_id = 6.shr_id) AND (
 8.es_date <= 7.busdate)
 Cross block entry 4
 Conjunct: (6.div_cur_code = 9.tc_code)
 AND (9.ee_date >= 7.busdate)
 Get
 Retrieval by index of relation 9:STD
 Index name STD_U_PRM [1:2]
 Keys: (9.sec_id = 8.sec_id) AND (
 9.es_date <= 7.busdate)
 Merge block entry 2
 Cross block of 6 entries
 Cross block entry 1
 Conjunct: 13.busdate = '24−MAY−2005'
 Index only retrieval of relation 13:ABD
 Index name ABD_U_PRM [1:1] Direct lookup
 Keys: <mapped field> = '24−MAY−2005'
 Cross block entry 2
 Conjunct: 15.es_date <= 13.busdate
 Conjunct: 15.ee_date >= 13.busdate
 Get Retrieval by index of relation 15:STC
 Index name STC_U_PRM [0:0]
 Cross block entry 3
 Conjunct: 10.es_date <= 13.busdate
 Conjunct: 10.ee_date >= 13.busdate
 Get Retrieval by index of relation 10:STD
 Index name STD_U_FRG_7 [1:1]
 Keys: 10.stc_id = 15.stc_id
 Cross block entry 4
 Conjunct: 14.ee_date >= 13.busdate
 Get Retrieval by index of relation 14:RLC
 Index name RLC_U_PRM [1:2]
 Keys: (10.rlc_code = 14.rlc_code) AND
 (14.es_date <= 13.busdate)
 Cross block entry 5
 Conjunct: (11.ee_date >= 13.busdate) AND (
 11.inst_code <> 1)
 Get Retrieval by index of relation 11:SEC
 Index name SEC_U_PRM [1:2]
 Keys: (10.sec_id = 11.sec_id) AND (11.es_date
 <= 13.busdate)
 Bool: 11.sec_id = 32978
 Cross block entry 6
 Get Retrieval by index of relation 12:OPA
 Index name OPA_U_PRM [1:1] Direct lookup
 Keys: 12.sec_id = 11.sec_id
0 rows selected

Note1:: The conjunct "5.sec_id = 32978" is generated from the predicate "sec_id = 32978" since sec_id is a
mapped column from the OM_STATIC_VIEW (a derived table) which contains the UNION query with the
first leg as a left outer join and the second leg as a regular join subquery.

Note2:: The match strategy is used for the left outer join operation and thus it requires a sort node. The sort
operation in Rdb always pre−loaded the records from the table into the sort buffer before the actual record
retrieval.

Oracle® Rdb for OpenVMS

2.1 Software Errors Fixed That Apply to All Interfaces 21

Note3:: When the conjunct "5.sec_id = 32978" is evaluated, the column "5.sec_id" contains a stale value from
the table 5:SEC instead of the updated value from the sort buffer. This causes the query to return FALSE even
though the correct record is found.

As a workaround, the query works if the index SEC_U_FRG_7 for SEC table is dropped since the query now
switches from match to cross strategy for the left outer join operation without the sort node. This could also
happen if the SQL flag is set to 'index_column_group' or 'old_cost_model'.

The following is the strategy output of the same query after the index SEC_U_FRG_7 is dropped.

Conjunct: (<mapped field> = 32978) AND
 (<mapped field> = '24−MAY−2005')
Merge of 1 entries
 Merge block entry 1
 Merge of 2 entries
 Merge block entry 1
 Conjunct: 5.sec_id = 32978 <== See Note4
 Conjunct: 1.busdate = '24−MAY−2005'
 Cross block of 2 entries (Left Outer Join) <== See Note4
 Cross block entry 1
 Merge of 1 entries
 Merge block entry 1
 Cross block of 6 entries
 Cross block entry 1
 Conjunct: 1.busdate = '24−MAY−2005'
 Index only retrieval of relation 1:ABD
 Index name ABD_U_PRM [1:1] Direct lookup
 Keys: <mapped field> = '24−MAY−2005'
 Cross block entry 2
 Conjunct: (5.ee_date >= 1.busdate) AND (
 5.inst_code = 1)
 Get Retrieval by index of relation 5:SEC <== See Note4
 Index name SEC_U_PRM [1:2]
 Keys: (<mapped field> = 32978) AND (5.es_date <=
 1.busdate)
 Cross block entry 3
 Conjunct: 4.es_date <= 1.busdate
 Conjunct: 4.ee_date >= 1.busdate
 Get Retrieval by index of relation 4:STC
 Index name STC_U_PRM [0:0]
 Cross block entry 4
 Conjunct: 0.ee_date >= 1.busdate
 Conjunct: 0.stc_id = 4.stc_id
 Get
 Retrieval by index of relation 0:STD
 Index name STD_U_PRM [1:2]
 Keys: (0.sec_id = 5.sec_id) AND (
 0.es_date <= 1.busdate)
 Cross block entry 5
 Get Retrieval by index of relation 2:OPA
 Index name OPA_U_PRM [1:1] Direct lookup
 Keys: 2.sec_id = 5.sec_id
 Cross block entry 6
 Conjunct: 3.ee_date >= 1.busdate
 Get Retrieval by index of relation 3:RLC
 Index name RLC_U_PRM [1:2]
 Keys: (0.rlc_code = 3.rlc_code)
 AND (3.es_date <= 1.busdate)
 Cross block entry 2
 Conjunct: (5.sec_sub_id = 6.shr_id) AND (

Oracle® Rdb for OpenVMS

2.1 Software Errors Fixed That Apply to All Interfaces 22

 6.div_cur_code = 0.tc_code) AND (
 6.ex_div_date = 1.busdate)
 Merge of 1 entries
 Merge block entry 1
 Aggregate: 0:SUM (6.div_value)
 Sort: 6.shr_id(a), 6.ex_div_date(a), 6.div_cur_code
 (a)
 Cross block of 4 entries
 Cross block entry 1
 Index only retrieval of relation 7:ABD
 Index name ABD_U_PRM [0:0]
 Cross block entry 2
 Conjunct: (5.sec_sub_id = 6.shr_id) AND (
 6.div_cur_code = 0.tc_code) AND
 (6.ex_div_date = 1.busdate)
 Conjunct: 6.ex_div_date = 7.busdate
 Get Retrieval by index of relation 6:DIV
 Index name DIV_U_ALT_1 [2:2]
 Keys: (6.ex_div_date = 7.busdate) AND (
 5.sec_sub_id = 6.shr_id)
 Cross block entry 3
 Conjunct: 8.ee_date >= 7.busdate
 Conjunct: 8.inst_code = 1
 Get Retrieval by index of relation 8:SEC
 Index name SEC_U_FRG_8 [1:2]
 Keys: (8.sec_sub_id = 6.shr_id) AND (
 8.es_date <= 7.busdate)
 Cross block entry 4
 Conjunct: (6.div_cur_code = 9.tc_code)
 AND (9.ee_date >= 7.busdate)
 Get
 Retrieval by index of relation 9:STD
 Index name STD_U_PRM [1:2]
 Keys: (9.sec_id = 8.sec_id) AND (
 9.es_date <= 7.busdate)
 Merge block entry 2
 Cross block of 6 entries
 Cross block entry 1
 Conjunct: 13.busdate = '24−MAY−2005'
 Index only retrieval of relation 13:ABD
 Index name ABD_U_PRM [1:1] Direct lookup
 Keys: <mapped field> = '24−MAY−2005'
 Cross block entry 2
 Conjunct: 15.es_date <= 13.busdate
 Conjunct: 15.ee_date >= 13.busdate
 Get Retrieval by index of relation 15:STC
 Index name STC_U_PRM [0:0]
 Cross block entry 3
 Conjunct: 10.es_date <= 13.busdate
 Conjunct: 10.ee_date >= 13.busdate
 Get Retrieval by index of relation 10:STD
 Index name STD_U_FRG_7 [1:1]
 Keys: 10.stc_id = 15.stc_id
 Cross block entry 4
 Conjunct: 14.ee_date >= 13.busdate
 Get Retrieval by index of relation 14:RLC
 Index name RLC_U_PRM [1:2]
 Keys: (10.rlc_code = 14.rlc_code) AND
 (14.es_date <= 13.busdate)
 Cross block entry 5
 Conjunct: (11.ee_date >= 13.busdate) AND (
 11.inst_code <> 1)

Oracle® Rdb for OpenVMS

2.1 Software Errors Fixed That Apply to All Interfaces 23

 Get Retrieval by index of relation 11:SEC
 Index name SEC_U_PRM [1:2]
 Keys: (10.sec_id = 11.sec_id) AND (11.es_date
 <= 13.busdate)
 Bool: 11.sec_id = 32978
 Cross block entry 6
 Get Retrieval by index of relation 12:OPA
 Index name OPA_U_PRM [1:1] Direct lookup
 Keys: 12.sec_id = 11.sec_id
 sec_id busdate tc_code
 32978 24−MAY−2005 00:00:00.00 CHF
1 row selected

Note4:: The cross strategy is used for the left outer join operation instead of a match strategy. Since no sort is
required and the column 5.sec_id in the conjunct "5.sec_id = 32978" did not get pre−loaded as in the case of a
sort operation, it was correctly retrieved from the table on the fly during the cross operation.

The key parts of this query which contributed to the situation leading to the error are these:

The main query selects a particular row from either a view or derived table of a union query where the
first leg is a left outer join subquery and the second leg is a regular join subquery.

1.

The column of the equality predicate is mapped via the view or derived table to the same base table
which is included in both legs of the left outer join subquery and the second UNION leg.

2.

The query applies a match strategy for the left outer join operation with a sort node at the outer loop
and another sort node at the inner loop.

3.

This problem has been corrected in Oracle Rdb Release 7.0.8.2.

2.1.3 COSI_MEM_FREE_VMLIST Bugcheck with Vertical
Partitioning

Bug 4460398

When vertical partitioning was in use, the following bugcheck was possible.

***** Exception at 0091B704 : COSI_MEM_FREE_VMLIST + 00000094
%SYSTEM−F−ACCVIO, access violation, reason mask=04,
 virtual address=000000000008308D, PC=000000000091B704, PS=0000001B

This problem has been corrected in Oracle Rdb Release 7.0.8.2.

2.1.4 Bugcheck from INSERT with Partition Index

Bug 4477862

The following query bugchecks.

SQL>INSERT INTO TBL1 VALUES (1,2,3);
%DEBUG−I−DYNMODSET, setting module RDMS$PREEXEMSC
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual address=000000000000
0060, PC=00000000006A2358, PS=00000018
1816: IF .CXPR [CXPR$L_OPERATOR] NEQU BLR$K_MISSING

Oracle® Rdb for OpenVMS

2.1.3 COSI_MEM_FREE_VMLIST Bugcheck with Vertical Partitioning 24

where the tables are defined as follows:

CREATE TABLE TBL1 (TBL1_P1 INT, TBL1_P2 INT, TBL1_P3 INT, CONSTRAINT TBL1_PRIM
PRIMARY KEY (TBL1_P1, TBL1_P2) DEFER);

CREATE TABLE TBL2 (TBL2_P1 INT, TBL2_P2 INT, TBL2_P3 INT, CONSTRAINT TBL2_FOR
FOREIGN KEY (TBL2_P1, TBL2_P2) REFERENCES TBL1 (TBL1_P1, TBL1_P2) DEFER);

CREATE INDEX IDX1 ON TBL1 (TBL1_P1 DESC, TBL1_P2 DESC) STORE USING (TBL1_P1)
IN A1 WITH LIMIT OF (2)
IN A2 WITH LIMIT OF (1)
OTHERWISE IN A3;
CREATE INDEX IDX2 ON TBL2 (TBL2_P1, TBL2_P2) ;
COMMIT;

UPDATE RDB$RELATIONS SET RDB$CARDINALITY = 306
WHERE RDB$RELATION_NAME='TBL2';
COMMIT;

As a workaround, the query works if the cardinality of table TBL2 is updated to a number below 306 rows.

UPDATE RDB$RELATIONS SET RDB$CARDINALITY = 305
WHERE RDB$RELATION_NAME='TBL2';
COMMIT;

This problem in the INSERT statement occurs when the following conditions are met:

The table TBL1 contains a primary constraint and the table TBL2 contains a foreign key constraint
referencing the primary keys of TBL1.

1.

The index for the table TBL1 is a partition index keying on the leading primary keys.2.
The cardinality of the table TBL2 is updated to a number such that the optimizer chooses a match
strategy over cross. In this case, the cardinality number is 306.

3.

This problem has been corrected in Oracle Rdb Release 7.0.8.2.

2.1.5 Wrong Result from Constant View Column

Bug 4448141

The following query should find one row.

set flags 'strategy,detail';
select employee_id, i.const_col, j.const_col
from employees
 join mfp_v1 i using (employee_id)
 left outer join mfp_v2 j using (employee_id)
 where i.const_col = 9 and j.const_col is NULL
Tables:
 0 = EMPLOYEES
 1 = EMPLOYEES
 2 = SALARY_HISTORY
 3 = EMPLOYEES
 4 = SALARY_HISTORY
Conjunct: (9 = 9) AND MISSING (9)
Match (Left Outer Join)
 Outer loop

Oracle® Rdb for OpenVMS

2.1.5 Wrong Result from Constant View Column 25

 Conjunct: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID
 Match
 Outer loop (zig−zag)
 Index only retrieval of relation 0:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Inner loop
 Temporary relation
 Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation 1:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Cross block entry 2
 Conjunct: <agg0> <> 0
 Aggregate−F1: 0:COUNT−ANY (<subselect>)
 Index only retrieval of relation 2:SALARY_HISTORY
 Index name SH_EMPLOYEE_ID [1:1]
 Keys: 1.EMPLOYEE_ID = 2.EMPLOYEE_ID
 Inner loop
 Temporary relation
 Sort: 3.POSTAL_CODE(a)
 Conjunct: <agg1> <> 0
 Match (Agg Outer Join)
 Outer loop
 Get Retrieval by index of relation 3:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Inner loop (zig−zag)
 Aggregate−F1: 1:COUNT−ANY (<subselect>)
 Index only retrieval of relation 4:SALARY_HISTORY
 Index name SH_EMPLOYEE_ID [0:0]
0 rows selected

where the views mfp_v1 and mfp_v2 are defined as follows:

create view mfp_v1 (employee_id, const_col) as
select a.employee_id, 9 from employees a
 where a.employee_id = any (select z.employee_id from salary_history z)
 ;

create view mfp_v2 (employee_id, const_col) as
select a.postal_code, 9 from employees a
 where a.employee_id = any (select z.employee_id from salary_history z)
 ;

If the WHERE predicates are removed, the query finds 100 rows with the values 9 and NULL, as in the
following example.

select employee_id, i.const_col, j.const_col
from employees
 join mfp_v1 i using (employee_id)
 left outer join mfp_v2 j using (employee_id);
Tables:
 0 = EMPLOYEES
 1 = EMPLOYEES
 2 = SALARY_HISTORY
 3 = EMPLOYEES
 4 = SALARY_HISTORY
Match (Left Outer Join)
 Outer loop
 Conjunct: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID
 Match
 Outer loop (zig−zag)

Oracle® Rdb for OpenVMS

2.1.5 Wrong Result from Constant View Column 26

 Index only retrieval of relation 0:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Inner loop
 Temporary relation
 Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation 1:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Cross block entry 2
 Conjunct: <agg0> <> 0
 Aggregate−F1: 0:COUNT−ANY (<subselect>)
 Index only retrieval of relation 2:SALARY_HISTORY
 Index name SH_EMPLOYEE_ID [1:1]
 Keys: 1.EMPLOYEE_ID = 2.EMPLOYEE_ID
 Inner loop
 Temporary relation
 Sort: 3.POSTAL_CODE(a)
 Conjunct: <agg1> <> 0
 Match (Agg Outer Join)
 Outer loop
 Get Retrieval by index of relation 3:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Inner loop (zig−zag)
 Aggregate−F1: 1:COUNT−ANY (<subselect>)
 Index only retrieval of relation 4:SALARY_HISTORY
 Index name SH_EMPLOYEE_ID [0:0]
 EMPLOYEE_ID I.CONST_COL J.CONST_COL
 00164 9 NULL
 00165 9 NULL
 00166 9 NULL
 00167 9 NULL
...etc...
 00435 9 NULL
 00471 9 NULL
100 rows selected

There is no known workaround for this problem.

The key parts of this query which contributed to the situation leading to the error are these:

The main query selects from two views left outer joined by the common column 'employee_id' where
both views contain the constant literal as one of the columns. In this case, the constant literal is '9'.

1.

The filter predicates in the WHERE clause reference the constant column of each view.2.

This problem has been corrected in Oracle Rdb Release 7.0.8.2.

2.1.6 Wrong Result from UNION View Query with NOT
STARTING WITH Clause

Bugs 4550715 and 4327112

The following query should select 2 rows from the FW_V view for rows where column F3 does not start with
'Z'. As indicated next to the rows returned, the results are wrong. This is due to an incorrect query strategy, as
will be explained further on.

set flags 'strategy,detail';

Oracle® Rdb for OpenVMS

2.1.6 Wrong Result from UNION View Query with NOT STARTING WITH Clause 27

SELECT * FROM FW_V WHERE F3 NOT STARTING WITH 'Z';
Tables:
 0 = TAB_A
 1 = TAB_B
 2 = TAB_B
 3 = TAB_C
Reduce: <mapped field>, <mapped field>, <mapped field>
Sort: <mapped field>(a), <mapped field>(a), <mapped field>(a)
Merge of 2 entries
 Merge block entry 1
 Cross block of 3 entries
 Cross block entry 1
 Get Retrieval sequentially of relation 0:TAB_A
 Cross block entry 2
 Aggregate: 0:VIA (1.FLD3)
 Conjunct: 1.FLD2 = 0.FLD2
 Get Retrieval sequentially of relation 1:TAB_B
 Cross block entry 3
 Aggregate: 1:VIA (2.FLD3)
 Conjunct: 2.FLD2 = 0.FLD2
 Get Retrieval sequentially of relation 2:TAB_B
 Merge block entry 2
 Conjunct: NOT (3.F3 STARTING WITH 'Z')
 Get Retrieval sequentially of relation 3:TAB_C
 FLD1 FLD2 F3
 1 A Z <== wrong
 2 A Z <== wrong
 3 B 1 <== correct
 4 C Z <== wrong
 aaa bbb ccc <== correct
5 rows selected

The view, FW_V, is defined below. Following the view definition is a SELECT query similar to the problem
query shown earlier but without the clause "WHERE F3 NOT STARTING WITH 'Z'".

CREATE VIEW FW_V AS
SELECT
 FLD1,
 A.FLD2,
 NVL((SELECT FLD3 FROM TAB_B B WHERE B.FLD2 = A.FLD2), 'Z')
 FROM TAB_A A
UNION
SELECT F1, F2, F3
 FROM TAB_C;

select * from fw_v;
 FLD1 FLD2 F3
 1 A Z
 2 A Z
 3 B 1
 4 C Z
 aaa bbb ccc
5 rows selected

The query returns the correct result if the NOT operator is removed and the reason is that the conjunct
"STARTING WITH 'Z'" appears correctly in the detailed strategy, as in the following example.

SELECT * FROM FW_V WHERE F3 STARTING WITH 'Z';
Tables:
 0 = TAB_A

Oracle® Rdb for OpenVMS

2.1.6 Wrong Result from UNION View Query with NOT STARTING WITH Clause 28

 1 = TAB_B
 2 = TAB_B
 3 = TAB_C
Reduce: <mapped field>, <mapped field>, <mapped field>
Sort: <mapped field>(a), <mapped field>(a), <mapped field>(a)
Conjunct: <mapped field> STARTING WITH 'Z' <=== This conjunct appears here
Merge of 2 entries
 Merge block entry 1
 Cross block of 3 entries
 Cross block entry 1
 Get Retrieval sequentially of relation 0:TAB_A
 Cross block entry 2
 Aggregate: 0:VIA (1.FLD3)
 Conjunct: 1.FLD2 = 0.FLD2
 Get Retrieval sequentially of relation 1:TAB_B
 Cross block entry 3
 Aggregate: 1:VIA (2.FLD3)
 Conjunct: 2.FLD2 = 0.FLD2
 Get Retrieval sequentially of relation 2:TAB_B
 Merge block entry 2
 Conjunct: 3.F3 STARTING WITH 'Z'
 Get Retrieval sequentially of relation 3:TAB_C
 FLD1 FLD2 F3
 1 A Z
 2 A Z
 4 C Z
3 rows selected

If we compare the strategies of the good and bad queries, the only difference is that the bad query was missing
the conjunct "NOT STARTING WITH", but the second good query (the one without the NOT operator),
correctly places the conjunct "STARTING WITH 'Z'" outside the "Merge" entries.

There is no known workaround for this problem.

The key parts of this query which contributed to the situation leading to the error are these:

The main query selects from the derived table of a UNION clause with a filter predicate.1.
The first leg of the UNION clause contains a select query with a NVL function on a subselect query.2.
The second leg of the UNION clause contains a select query from a table.3.
The WHERE clause contains NOT operator in front of a string function, e.g. STARTING WITH.4.

This problem has been corrected in Oracle Rdb Release 7.0.8.2.

2.1.7 Unexpected Bugcheck when Formatting Illegal
Date/Time Value

Bug 4557990

In previous versions of Oracle Rdb, it was possible that an invalid value in a TIME, DATE (ansi), or
TIMESTAMP would result in a reported ACCVIO or a BUGCHECK from Rdb. This might occur when using
Interactive SQL to display the value of when using RMU/UNLOAD to format the value as text.

This problem has been corrected in Oracle Rdb Release 7.0.8.2. Oracle Rdb now uses a field of *** to
indicate the illegal date/time data.

Oracle® Rdb for OpenVMS

2.1.7 Unexpected Bugcheck when Formatting Illegal Date/Time Value 29

2.1.8 Wrong Result by Query with Constant Column Defined
in a View

Bugs 1752645 and 4155086

The following query should returns 100 rows with NULL for the column "v.const_col".

create view mfp_view (employee_id, const_col) as
select e.postal_code, 1 from employees e
 where e.employee_id = any (select z.employee_id from salary_history z);

select employee_id, v.const_col
 from employees left outer join mfp_view v using (employee_id)
where v.const_col is null;
Tables:
 0 = EMPLOYEES
 1 = EMPLOYEES
 2 = SALARY_HISTORY
Conjunct: MISSING (1)
Match (Left Outer Join)
 Outer loop
 Index only retrieval of relation 0:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Inner loop
 Temporary relation
 Sort: 1.POSTAL_CODE(a)
 Conjunct: <agg0> <> 0
 Match (Agg Outer Join)
 Outer loop
 Get Retrieval by index of relation 1:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Inner loop (zig−zag)
 Aggregate−F1: 0:COUNT−ANY (<subselect>)
 Index only retrieval of relation 2:SALARY_HISTORY
 Index name SH_EMPLOYEE_ID [0:0]
0 rows selected

This problem occurs when the main query is an outer join between the EMPLOYEES table and a view using
the EMPLOYEE_ID as the join predicate and the view contains a column of either constant value or an
expression of all constant values.

create view mfp_view (employee_id, const_col) as
select e.postal_code, 1+2 from employees e
 where e.employee_id = any (select z.employee_id from salary_history z);
select employee_id, v.const_col
 from employees left outer join mfp_view v using (employee_id)
where v.const_col is null;
Tables:
 0 = EMPLOYEES
 1 = EMPLOYEES
 2 = SALARY_HISTORY
Conjunct: MISSING (1 + 2)
Match (Left Outer Join)
 Outer loop
 Index only retrieval of relation 0:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Inner loop
 Temporary relation

Oracle® Rdb for OpenVMS

2.1.8 Wrong Result by Query with Constant Column Defined in a View 30

 Sort: 1.POSTAL_CODE(a)
 Conjunct: <agg0> <> 0
 Match (Agg Outer Join)
 Outer loop
 Get Retrieval by index of relation 1:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Inner loop (zig−zag)
 Aggregate−F1: 0:COUNT−ANY (<subselect>)
 Index only retrieval of relation 2:SALARY_HISTORY
 Index name SH_EMPLOYEE_ID [0:0]
0 rows selected

A similar query works if the constant column in the view is concatenated with another column of the
EMPLOYEES table (for example middle_initial).

create view mfp_view (employee_id, const_col) as
select e.postal_code, '1'||e.middle_initial from employees e
 where e.employee_id = any (select z.employee_id from salary_history z);

select employee_id, v.const_col
 from employees left outer join mfp_view v using (employee_id)
where v.const_col is null;
Tables:
 0 = EMPLOYEES
 1 = EMPLOYEES
 2 = SALARY_HISTORY
Conjunct: MISSING ('1' || 1.MIDDLE_INITIAL)
Match (Left Outer Join)
 Outer loop
 Index only retrieval of relation 0:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Inner loop
 Temporary relation
 Sort: 1.POSTAL_CODE(a)
 Conjunct: <agg0> <> 0
 Match (Agg Outer Join)
 Outer loop
 Get Retrieval by index of relation 1:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Inner loop (zig−zag)
 Aggregate−F1: 0:COUNT−ANY (<subselect>)
 Index only retrieval of relation 2:SALARY_HISTORY
 Index name SH_EMPLOYEE_ID [0:0]
 EMPLOYEE_ID I.CONST_COL
 00164 NULL
 00165 NULL
 ...etc...
 00471 NULL
100 rows selected

The fix for this bug was backed out to fix the problem for Bug 4155086. It is now redesigned with the correct
solution which also correctly handles the case where a view constant column of the same value exists in more
than one view.

The following example shows that a view constant of the value '9' exists in two different views.

attach 'file mf_personnel';

create view mfp_v1 (employee_id, const_col) as
select a.employee_id, 9 from employees a

Oracle® Rdb for OpenVMS

2.1.8 Wrong Result by Query with Constant Column Defined in a View 31

 where a.employee_id = any (select z.employee_id from salary_history z)
 group by a.employee_id;

create view mfp_v2 (employee_id, const_col) as
select a.postal_code, 9 from employees a
 where a.employee_id = any (select z.employee_id from salary_history z)
 group by a.postal_code;

The following query should find 100 rows with values 9 and NULL but
found only 0 row :

select count(*)
from employees
 join mfp_v1 i using (employee_id)
 left outer join mfp_v2 j using (employee_id)
 where i.const_col = 9 and j.const_col is NULL
 ;
Aggregate Conjunct
Match (Left Outer Join)
 Outer loop
 Conjunct
 Match
 Outer loop
 Reduce
 Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Cross block entry 2
 Conjunct Aggregate−F1
 Index only retrieval of relation SALARY_HISTORY
 Index name SH_EMPLOYEE_ID [1:1]
 Inner loop (zig−zag)
 Index only retrieval of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Inner loop
 Temporary relation Reduce Sort Conjunct
 Match (Agg Outer Join)
 Outer loop
 Get Retrieval by index of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Inner loop (zig−zag)
 Aggregate−F1 Index only retrieval of relation SALARY_HISTORY
 Index name SH_EMPLOYEE_ID [0:0]

 0
1 row selected

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.0.8.2.

2.1.9 Bugchecks or Corruption in Indexes of TYPE IS
SORTED RANKED

Bug 4437323

Oracle® Rdb for OpenVMS

2.1.9 Bugchecks or Corruption in Indexes of TYPE IS SORTED RANKED 32

During a sequence of inserts on a table with an index of TYPE IS SORTED RANKED, it was possible that the
index could become corrupt. This could cause the index to be left corrupt or could result in a bugcheck dump
if subsequent delete operations were performed in the same transaction.

The problem is quite rare and requires that a series of at least three consecutive inserts occur on exactly the
same duplicate node in a specific pattern.

If the index was corrupted, a subsequent verify would produce output similar to the following example.

SQL> insert into t1 values (0,33);
1 row inserted
SQL> insert into t1 values (0,11);
1 row inserted
SQL> insert into t1 values (0,22);
1 row inserted
SQL> commit;
SQL> Exit
$ rmu/verify/index/data test
%RMU−W−IDXDATMIS, Index I1 does not point to a row in table T1.
 Logical dbkey of the missing row is 68:12:1.
%RMU−W−BADIDXREL, Index I1 either points to a non−existent record or
 has multiple pointers to a record in table T1.
 The logical dbkey in the index is 68:14:1.

Various bugchecks may result depending on how the corruption was detected. The following shows two
different examples of the call frames in bugcheck dumps from this problem.

***** Exception at 012D7DC8 : PIOFETCH$WITHIN_DB + 000005A8
Saved PC = 012D5414 : PIOFETCH$FETCH + 000002C4
Saved PC = 012D44D4 : PIO$FETCH + 00000914
Saved PC = 01220044 : DIOFETCH$FETCH_VISIBLE_SEG + 00000154
Saved PC = 01221414 : DIOFETCH$FETCH_ONE_LINE + 00000AB4
Saved PC = 01221978 : DIO$FETCH_DBKEY + 000002F8
Saved PC = 01044848 : RDMS$$KOD_FIND_CURRENT_REC + 00000558
Saved PC = 01023684 : RDMS$$EXE_NEXT + 00000954

***** Exception at 0141D9DC : PSII2REMOVEDUPBBC + 0000118C
Saved PC = 0141A3CC : PSII2REMOVEBOTTOM + 0000071C
Saved PC = 01413E74 : PSII2REMOVET + 000001F4
Saved PC = 014140B4 : PSII2REMOVET + 00000434
Saved PC = 014140B4 : PSII2REMOVET + 00000434
Saved PC = 014140B4 : PSII2REMOVET + 00000434
Saved PC = 0141481C : PSII2REMOVETREE + 000001FC
Saved PC = 016DA80C : RDMS$$KOD_REMOVE_TREE + 0000162C
Saved PC = 016A29DC : RDMS$$EXE_ACTION + 0000321C

If the bugcheck occurred during the transaction that corrupted the index, the transaction would be rolled back
and the index would not be left corrupt.

If the problem did not cause a bugcheck during the offending transaction, the transaction could commit and
the index would be left corrupt. The index should be verified using the /INDEX/DATA qualifiers of RMU
VERIFY. If errors are reported, the index should be dropped and recreated to eliminate the corruption.

The problem can be avoided by adding columns to the index to make it unique, or by using alternate index
types.

Oracle® Rdb for OpenVMS

2.1.9 Bugchecks or Corruption in Indexes of TYPE IS SORTED RANKED 33

This problem has been corrected in Oracle Rdb Release 7.0.8.2.

Oracle® Rdb for OpenVMS

2.1.9 Bugchecks or Corruption in Indexes of TYPE IS SORTED RANKED 34

2.2 Oracle RMU Errors Fixed

2.2.1 RMU /UNLOAD Output File Maximum Record Size

Bug 4573066

Previously, the RMU /UNLOAD command, when writing in TEXT format, would sometimes incorrectly set
the output file maximum record size field in the file header.

This problem has been corrected in Oracle Rdb Release 7.0.8.2.

2.2 Oracle RMU Errors Fixed 35

2.3 LogMiner Errors Fixed

2.3.1 RMU /UNLOAD /AFTER_JOURNAL Field Order
Clarification

Unlike SQL and RMU /UNLOAD, the Oracle Rdb LogMiner (tm) RMU /UNLOAD /AFTER_JOURNAL
command outputs fields in the database on−disk field order. This difference can become apparant when a
table definition has been modified. For example, when adding a new column to appear in a positon other than
at the end of the record.

The following example shows one way that the Oracle Rdb LogMiner (tm) RMU /UNLOAD
/AFTER_JOURNAL command outputs fields in the database on−disk field order.

$!
$ SQL$
 CREATE DATA FILE FOO LOGMINER SUPPORT ENA;
 −− Create table then insert another column between COL1 & COL2.

 CREATE TABLE T1 (COL1 INT, COL2 INT);
 ALTER TABLE T1 ADD COLUMN COL3 INT BEFORE COLUMN COL2;
 SHOW TABLE (COLUMN) T1;
Information for table T1

Columns for table T1:
Column Name Data Type Domain
−−−−−−−−−−− −−−−−−−−− −−−−−−
COL1 INTEGER
COL3 INTEGER
COL2 INTEGER

 COMMIT;

 DISCONNECT ALL;
 ALTER DATA FILE FOO JOU ENA ADD JOU J1 FILE J1;
 EXIT;
$!
$ RMU/BACKUP/NOLOG FOO NLA0:FOO
$ RMU/BACKUP/AFTER/NOLOG FOO NLA0:B1
$!
$ SQL$
 ATTACH 'FILE FOO';
 INSERT INTO T1 VALUES (NULL,2,3); −− COL1=NULL, COL3=2, COL2=3
1 row inserted
 INSERT INTO T1 VALUES (1,NULL,3); −− COL1=1, COL3=NULL, COL2=3
1 row inserted
 INSERT INTO T1 VALUES (1,2,NULL); −− COL1=1, COL3=2, COL2=NULL
1 row inserted
 COMMIT;
 SELECT * FROM T1; −− Show data content
 COL1 COL3 COL2
 NULL 2 3
 1 NULL 3
 1 2 NULL
3 rows selected
 EXIT;
$!

2.3 LogMiner Errors Fixed 36

$ RMU/BACKUP/AFTER/NOLOG FOO B1
$!
$ RMU/UNL/RECORD=FILE=T1.RRD1 FOO T1 NLA0:T1
%RMU−I−DATRECUNL, 3 data records unloaded.
$ RMU/UNL/AFTER/NOLOG/FORMAT=DUMP FOO B1 −
 /TABLE=(NAME=T1,OUTPUT=T1.DAT,RECORD=T1.RRD2)
$!
$ SEARCH T1.RRD1 COL ! Show field order − RMU/UNLOAD
DEFINE FIELD COL1 DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD COL3 DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD COL2 DATATYPE IS SIGNED LONGWORD.
 COL1 .
 COL3 .
 COL2 .
$ SEARCH T1.RRD2 COL ! Show field order − RMU/UNLOAD/AFTER_JOURNAL
DEFINE FIELD COL1 DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD COL2 DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD COL3 DATATYPE IS SIGNED LONGWORD.
 COL1.
 COL2.
 COL3.
$ SEARCH T1.DAT RDB$LM_RELATION_NAME, COL ! Show data content
RDB$LM_RELATION_NAME : T1
COL1 : NULL
COL2 : 3
COL3 : 2
RDB$LM_RELATION_NAME : T1
COL1 : 1
COL2 : 3
COL3 : NULL
RDB$LM_RELATION_NAME : T1
COL1 : 1
COL2 : NULL
COL3 : 2
$!

Oracle® Rdb for OpenVMS

2.3 LogMiner Errors Fixed 37

Chapter 3
Software Errors Fixed in Oracle Rdb Release
7.0.8.1
This chapter describes software errors that are fixed by Oracle Rdb Release 7.0.8.1.

Chapter 3Software Errors Fixed in Oracle Rdb Release 7.0.8.1 38

3.1 Software Errors Fixed That Apply to All
Interfaces

3.1.1 Problem with Rdb 7.0.8 and VMS Versions Below V7.1

It was discovered that Rdb Release 7.0.8 would not install on any VMS versions below V7.1 (ie V5.5−2) due
to some changes that had been made in the software.

This problem has been corrected in Oracle Rdb Release 7.0.8.1. Rdb Release 7.0.8.1 will install and run
successfully on VMS versions as low as V5.5−2.

3.1.2 Wrong Results Generated by Query With Common
Boolean Elements

Bug 4332115

In prior releases of Oracle Rdb, an optimization was applied to WHERE clauses and other Boolean
expressions to reformat those queries to gain possible advantages in the query execution phase. However, in
the reported problem, this optimization leads to a query strategy that did not return the correct results. In some
cases, the common expression in an OR expression was lifted too high in the expression and so distorted the
results.

While this problem is possible in older versions of Rdb, it may occur more frequently in Rdb V7.0 and later
versions because of a more aggressive restructure algorithm employed by these recent versions.

For example, this query against the EMPLOYEES table should produce four result rows.

SQL> set flags 'strategy,detail';
SQL>
SQL> select last_name, first_name
cont> from employees
cont> where
cont> (
cont> (
cont> (last_name = 'Watters' and first_name = 'Christine')
cont> or
cont> (last_name = 'Watters' and first_name = 'Cora')
cont>)
cont> and
cont> (
cont> (last_name = 'Watters' and first_name = 'Christine')
cont> or
cont> (last_name = 'Watters' and first_name = 'Cora')
cont>)
cont>)
cont> or
cont> (last_name = 'Smith')
cont> order by 1, 2
cont> ;
Tables:
 0 = EMPLOYEES

3.1 Software Errors Fixed That Apply to All Interfaces 39

Sort: 0.LAST_NAME(a), 0.FIRST_NAME(a)
Leaf#01 BgrOnly 0:EMPLOYEES Card=100
 Bool: ((((0.FIRST_NAME = 'Christine') OR (0.FIRST_NAME = 'Cora')) AND ((
 0.FIRST_NAME = 'Christine') OR (0.FIRST_NAME = 'Cora'))) OR (0.LAST_NAME
 = 'Smith')) AND (0.LAST_NAME = 'Watters')
 BgrNdx1 EMP_LAST_NAME [1:1] Fan=12
 Keys: 0.LAST_NAME = 'Watters'
 LAST_NAME FIRST_NAME
 Watters Christine
 Watters Cora
2 rows selected
SQL> −− expecting 4 rows

The detailed strategy output shows that the expression AND (0.LAST_NAME = 'Watters') had been raised to
the outer most part of the query and thus erroneously eliminated two of the rows matching 'Smith'.

This problem has been corrected in Oracle Rdb Release 7.0.8.1. The query optimizer now correctly handles
the case where a trailing OR term does not match a common Boolean with the query.

3.1.3 Query With Shared Expressions in OR Predicates
Returns Wrong Result

Bugs 4300529 and 3918278

The following query with shared expressions in an OR predicate returns the wrong result.

select * from
 (SELECT T1.SEM, T1.PAL, T1.VUO, T1.KK, T1.PV
 FROM T1, T2
 WHERE (T2.SEM = T1.SEM)
 AND
 ((NOT EXISTS (SELECT T3.SEM FROM T3
 WHERE T3.SEM = T1.SEM))
 OR
 (T1.SEM = 'JOVK'))
 AND
 ((NOT EXISTS (SELECT T3.SEM FROM T3
 WHERE T3.PAL = T1.PAL))
 OR
 (T1.SEM = 'JOVK'))
) as DTAB (SEM, PAL, VUO, KK, PV)
where VUO = '2005' and KK = '03' and PV = '29';
Tables:
 0 = T1
 1 = T2
 2 = T3
 3 = T3
Merge of 1 entries
 Merge block entry 1
 Cross block of 4 entries
 Cross block entry 1
 Conjunct: (0.VUO = '2005') AND (0.KK = '03') AND (0.PV = '29')
 Index only retrieval of relation 0:T1
 Index name T1_INDEX [3:3]
 Keys: (0.VUO = '2005') AND (0.KK = '03') AND (0.Pv = '29')
 Cross block entry 2
 Conjunct: (<agg0> = 0) OR (0.SEM = 'JOVK')
 Conjunct: (<agg0> = 0) OR (0.SEM = 'JOVK')

Oracle® Rdb for OpenVMS

3.1.3 Query With Shared Expressions in OR Predicates Returns Wrong Result 40

 Aggregate−F1: 0:COUNT−ANY (<subselect>)
 Conjunct: (2.SEM = 0.SEM)
 Index only retrieval of relation 2:T3
 Index name T3_INDEX [0:0]
 Cross block entry 3
 Conjunct: (<agg0> = 0) OR (0.SEM = 'JOVK')
 Conjunct: 0.SEM = 'JOVK' <== See NOTE
 Conjunct: ((<agg0> = 0) OR (0.SEM = 'JOVK')) AND ((<agg1> = 0) OR
 (0.SEM = 'JOVK'))
 Aggregate−F1: 1:COUNT−ANY (<subselect>)
 Conjunct: (<agg0> = 0) OR (0.SEM = 'JOVK')
 Conjunct: (<agg0> = 0) OR (0.SEM = 'JOVK')
 Conjunct: (3.PAL = 0.PAL)
 Index only retrieval of relation 3:T3
 Index name T3_INDEX [0:0]
 Cross block entry 4
 Conjunct: ((<agg0> = 0) OR (0.SEM = 'JOVK')) AND ((<agg1> = 0) OR
 (0.SEM = 'JOVK'))
 Index only retrieval of relation 1:T2
 Index name T2_INDEX [1:1] Direct lookup
 Keys: 1.SEM = 0.SEM
 SEM PAL VUO KK PV
 JOVK TV2 2005 03 29
 JOVK TV2 2005 03 29
2 rows selected

NOTE:: The conjunct "(0.SEM = 'JOVK')" is separated from its parent OR predicate with the other left
operand "(<agg0> = 0)".

The following cross entry 3 contains the incorrect conjunct "(0.SEM = 'JOVK')" which is separated from the
other left operand "(<agg0> = 0)" of the OR predicate.

 Cross block entry 3
 Conjunct: (<agg0> = 0) OR (0.SEM = 'JOVK')
 Conjunct: 0.SEM = 'JOVK' <== Incorrect
 Conjunct: ((<agg0> = 0) OR (0.SEM = 'JOVK')) AND ((<agg1> = 0) OR
 (0.SEM = 'JOVK'))
 Aggregate−F1: 1:COUNT−ANY (<subselect>)
 Conjunct: (<agg0> = 0) OR (0.SEM = 'JOVK')
 Conjunct: (<agg0> = 0) OR (0.SEM = 'JOVK')
 Conjunct: (3.PAL = 0.PAL)
 Index only retrieval of relation 3:T3
 Index name T3_INDEX [0:0]

There is no known workaround for this problem.

The key parts of this query which contributed to the situation leading to the error are these:

The main query selects from a derived table joining two tables with the filtering predicates in the
outer WHERE clause.

1.

The inner WHERE clause of the query selecting the derived table contains a join equality predicate
and two similar OR predicates with a shared expression "(T1.SEM = 'JOVK')" as the right side
operand.

2.

This problem has been corrected in Oracle Rdb Release 7.0.8.1.

Oracle® Rdb for OpenVMS

3.1.3 Query With Shared Expressions in OR Predicates Returns Wrong Result 41

3.1.4 Various Errors or Corruption of Ranked Indexes

Bug 4216643

If a series of updates occurred on an index node of TYPE IS SORTED RANKED in the same transaction, it
was possible that the index node could be corrupted. Several different results could occur depending on
subsequent operations in the transaction.

If there were no further operations on the index node in the same transaction and the transaction
committed, the index would be left corrupt.

•

If a subsequent update attempted certain operations on the index node, various bugchecks could
result. In this case, the transaction would be rolled back and the index node would not be corrupt.

•

If a subsequent update attempted to update the same index node, the update could fail with the error
message "RDB−E−NO_RECORD, access by dbkey failed because dbkey is no longer associated with
a record". In this case, the index might or might not be left corrupt depending on the precise sequence
of operations and also on the application's response to the error. If the application commited the
transaction, the index might be left corrupt. If the application rolled back the transaction, the index
would not be left corrupt.

•

In the reported case, a RDB−E−NO_RECORD error was reported, and the failed update was automatically
rolled back. This is termed a verb rollback. The following example shows the reported error.

SQL>delete from some_table where some_key < 20050225;
%RDB−E−NO_RECORD, access by dbkey failed because dbkey is no longer
associated with a record
−RDMS−F−NODBK, 98:770:1 does not point to a data record

In this case, a subsequent RMU/VERIFY reported no errors and the index was not corrupt.

To produce this problem, a precise sequence of operations needed to occur within the same transaction.

A row is deleted where the key value is not the first key value in the index node and that key value
has many duplicates causing the duplicates chain to overflow into several overflow index nodes.

•

The dbkey for the deleted row must be in the first overflow node for the key value.•
A row is deleted that is the last remaining row with a key value in the same index node and that key
value appeared in the index node before the previously deleted row.

•

Another row is deleted with the first key value and the deleted dbkey is the last remaining dbkey in
the first overflow node.

•

When the last dbkey is deleted from the first overflow node, that node is deleted and the overflow pointer in
the index node must be modified to point to the second overflow node. In the sequence above, the deletion of
the unique key values caused the location of the second ikey to be moved in the index node but the third
delete used a stale pointer to update the overflow dbkey.

The problem can be avoided by performing the sequence of operations in a different order or in separate
transactions. The problem only affects indexes of type is sorted ranked.

If index corruption occurs, the index must be dropped and recreated to eliminate the corruption.

This problem has been corrected in Oracle Rdb Release 7.0.8.1.

Oracle® Rdb for OpenVMS

3.1.4 Various Errors or Corruption of Ranked Indexes 42

3.1.5 Wrong Result From Query With Common Join
Booleans in OR

Bugs 4332115 and 1329838

The following query with common join booleans in an OR predicate returns the wrong result (should be 5
rows) after the common boolean optimization is manually disabled (by commenting out the code).

sel e.employee_id, e.last_name, j.job_start
 from employees e, job_history j
 where
 e.employee_id = j.employee_id and e.employee_id = '00222'
 or
 e.employee_id = j.employee_id and e.employee_id = '00234'
 or
 e.employee_id = j.employee_id and e.employee_id = '00345'
;
Tables:
 0 = EMPLOYEES
 1 = JOB_HISTORY
Cross block of 2 entries
 Cross block entry 1
 Get Retrieval by index of relation 0:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Cross block entry 2
 Conjunct:
 ((0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = '00222'))
 OR
 ((0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = '00234'))
 OR
 ((0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = '00345'))
 OR index retrieval
 Conjunct:
 ((0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = '00222'))
 OR
 ((0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = '00234'))
 OR index retrieval
 Conjunct:
 (0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = '00222')
 Get Retrieval by index of relation 1:JOB_HISTORY
 Index name JOB_HISTORY_HASH [1:1]
 Keys: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID
 Conjunct:
 NOT ((0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = '00222'))
 AND
 (0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = '00234')
 Get Retrieval by index of relation 1:JOB_HISTORY
 Index name JOB_HISTORY_HASH [1:1]
 Keys: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID
 Conjunct:
 NOT (((0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = '00222'))
 OR
 (0.EMPLOYEE_ID = 1.EMPLOYEE_ID)) ! Note :: <== missing '00234'
 AND (0.EMPLOYEE_ID = 1.EMPLOYEE_ID) AND (0.EMPLOYEE_ID = '00345')
 Get Retrieval by index of relation 1:JOB_HISTORY
 Index name JOB_HISTORY_HASH [1:1]
 Keys: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID
 E.EMPLOYEE_ID E.LAST_NAME J.JOB_START
 00222 Lasch 28−Dec−1979

Oracle® Rdb for OpenVMS

3.1.5 Wrong Result From Query With Common Join Booleans in OR 43

 00222 Lasch 18−Aug−1976
 00234 Robinson 20−May−1980
 00234 Robinson 5−Mar−1978
4 rows selected

Note that the boolean '0.EMPLOYEE_ID = '00234' is missing in the NOT predicate of the 2nd leg of the outer
OR index retrieval.

There is no known workaround for this problem.

The key parts of this query which contributed to the situation leading to the error are these:

The main query joins EMPLOYEES and JOB_HISTORY tables using EMPLOYEE_ID.1.
The WHERE clause of the query contains two OR predicates with three operands where
E.EMPLOYEE_ID = J.EMPLOYEE_ID is a common join boolean in each operand.

2.

This problem has been corrected in Oracle Rdb Release 7.0.8.1.

3.1.6 Wrong Result Selecting From a Derived Table of
UNION Clause

Bug 4327112

The following query selects the wrong result (3 rows) from a derived table of a union clause.

set flags 'strategy,detail';
SEL * FROM
 (SELECT FLD1, A.FLD2,
 NVL((SELECT FLD3 FROM TAB_B B WHERE B.FLD2 = A.FLD2), 'Z')
 FROM TAB_A A
 UNION
 SELECT F1, F2, F3 FROM TAB_C
) AS DT (F1, F2, F3)
WHERE DT.F3 = 'Z';
Tables:
 0 = TAB_A
 1 = TAB_B
 2 = TAB_C
Merge of 1 entries
 Merge block entry 1
 Reduce: <mapped field>, <mapped field>, <mapped field>
 Sort: <mapped field>(a), <mapped field>(a), <mapped field>(a)
 Merge of 2 entries
 Merge block entry 1
 Cross block of 2 entries
 Cross block entry 1
 Get Retrieval sequentially of relation 0:TAB_A
 Cross block entry 2
 Aggregate: 0:VIA (1.FLD3)
 Conjunct: 1.FLD2 = 0.FLD2
 Get Retrieval sequentially of relation 1:TAB_B
 Merge block entry 2
 Conjunct: 2.F3 = 'Z'
 Get Retrieval sequentially of relation 2:TAB_C
 F1 F2 F3

Oracle® Rdb for OpenVMS

3.1.6 Wrong Result Selecting From a Derived Table of UNION Clause 44

 1 A Z
 2 A Z
 3 B 1 <== should not have returned this row
 4 C Z
4 rows selected

In the problem query, the conjunct "DT.F3 = 'Z'" appears only in the second UNION leg but not in the first
UNION leg. Without an additional conjunct at the outside of the union query, the query returns the wrong
result.

As a workaround, the query works if the union legs are swapped.

SEL * FROM
 (
 SELECT F1, F2, F3 FROM TAB_C ! <== second leg is swapped here as first leg
 UNION
 SELECT
 FLD1, A.FLD2,
 NVL((SELECT FLD3 FROM TAB_B B WHERE B.FLD2 = A.FLD2), 'Z')
 FROM TAB_A A
) AS DT (F1, F2, F3)
WHERE DT.F3 = 'Z';
Tables:
 0 = TAB_C
 1 = TAB_A
 2 = TAB_B
 3 = TAB_B
Conjunct: <mapped field> = 'Z' <== See note
Merge of 1 entries
 Merge block entry 1
 Reduce: <mapped field>, <mapped field>, <mapped field>
 Sort: <mapped field>(a), <mapped field>(a), <mapped field>(a)
 Merge of 2 entries
 Merge block entry 1
 Conjunct: 0.F3 = 'Z'
 Get Retrieval sequentially of relation 0:TAB_C
 Merge block entry 2
 Cross block of 3 entries
 Cross block entry 1
 Get Retrieval sequentially of relation 1:TAB_A
 Cross block entry 2
 Aggregate: 0:VIA (2.FLD3)
 Conjunct: 2.FLD2 = 1.FLD2
 Get Retrieval sequentially of relation 2:TAB_B
 Cross block entry 3
 Aggregate: 1:VIA (3.FLD3)
 Conjunct: 3.FLD2 = 1.FLD2
 Get Retrieval sequentially of relation 3:TAB_B
 F1 F2 F3
 1 A Z
 2 A Z
 4 C Z
3 rows selected

Note:: There is an additional conjunct "<mapped field> = 'Z'" at the top of the union query.

The key parts of this query which contributed to the situation leading to the error are these:

The main query selects from the derived table of a union clause with a filter predicate.1.

Oracle® Rdb for OpenVMS

3.1.6 Wrong Result Selecting From a Derived Table of UNION Clause 45

The first leg of the union clause contains a select query with a NVL function on a subselect query.2.
The second leg of the union clause contains a select query from a table.3.

This problem has been corrected in Oracle Rdb Release 7.0.8.1.

3.1.7 Incorrect Foreign Key Constraint Behavior on Update

Bug 4157145

A certain class of foreign key constraint would fail to detect a violation when an update was performed. Under
the following conditions, an update statement that modified a primary/unique key would not result in a
constraint violation if one were to exist:

The constraint must have been defined by the SQL REFERENCES clause (making it a foreign key
constraint).

•

The constraint must be self−referencing. A self−referencing constraint is one in which the columns of
the foreign key and the columns of the primary/unique key are in the same table.

•

The update statement must have referenced one or more of the columns that make up the
primary/unique key.

•

The following is an example of a self−referencing, foreign key constraint.

$ SQL$

create database filename test;

create table t (pk char (3), fk char (3),
 constraint pk_constraint
 primary key (pk) not deferrable);

insert into t(pk) values ('1');
1 row inserted
insert into t(pk,fk) values ('2','2');
1 row inserted
insert into t(pk,fk) values ('3','1');
1 row inserted
commit;

alter table t
 add constraint
 constraint fk_constraint
 foreign key (fk) references t(pk) not deferrable;
commit;

select * from t order by pk;
 PK FK
 1 NULL
 2 2
 3 1
3 rows selected
rollback;

update t set pk='9' where pk='1';
%RDB−E−INTEG_FAIL, violation of constraint FK_CONSTRAINT caused
operation to fail
−RDB−F−ON_DB, on database DISK:[DIR]TEST.RDB;

Oracle® Rdb for OpenVMS

3.1.7 Incorrect Foreign Key Constraint Behavior on Update 46

The third row, with values (3,1), shows a foreign key value that matches a primary key value in the first row.
The update statement, which attempts to change the primary key value in that first row from 1 to 9 violates the
foreign key constraint that a primary key with value 1 exist in the table.

The example shows the error message that is now reported by Oracle Rdb Release 7.0.8.1. In some prior
releases, the constraint violation was not detected, no error message was reported, and the update was
allowed.

For self−referencing, foreign key constraint definitions created using SQL and the REFERENCES clause and
created using Oracle Rdb Release 7.0.8.1, the correct behavior will appear. For such constraints created by
certain earlier releases of Oracle Rdb, the problem will continue to appear. To determine if a table contains
erroneous data, data that should cause a constraint violation, execute the statement
RMU/VERIFY/CONSTRAINT. If there is an error in the data, you should see an error message such as the
one in the following example. In the example, the database file specification has been abbreviated to the word
DBASE to shorten the text.

$ rmu/verify/constraint test.rdb
%RMU−I−BGNROOVER, beginning root verification
%RMU−I−ENDROOVER, completed root verification
%RMU−I−BGNVCONST, beginning verification of constraints for database DBASE
%RMU−W−CONSTFAIL, Verification of constraint "FK_CONSTRAINT" has failed.
%RMU−I−ENDVCONST, completed verification of constraints for database DBASE
...

Oracle recommends the regular use of RMU Verify to monitor the integrity of your databases.

To correct the problem in constraint definitions created using earlier releases of Oracle Rdb, first fix the
database files, either by dropping and recreating the offending constraint definitions or by recreating the
database files from EXPORT/IMPORT interchange files. Then, recreate any Oracle Rdb backup files for the
databases (files with filename extensions of .RBF).

For an existing Rdb database, alter the table definition to drop the foreign key constraint. Then, alter
the table definition to recreate the constraint using Oracle Rdb Release 7.0.8.1.

•

For an existing database backup file, make a new backup file from a database file in which the
constraint definition has been recreated as explained in the preceding bulleted item.

•

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.0.8.1.

3.1.8 Bugchecks in PSII2SPLITNODE When Using Ranked
Indexes

Bug 4324725

When inserting rows into a table with indexes of TYPE IS SORTED RANKED, it was possible that a bugcheck
could occur in the routine PSII2SPLITNODE. The exception occurred when the 65535th row was added to a
particular key value and the dbkey was inserted into an overflow node and the level one node contained
exactly one key value and had two or fewer free bytes.

The following example shows the bugcheck footprint for an index that only contains one key value.

Oracle® Rdb for OpenVMS

3.1.8 Bugchecks in PSII2SPLITNODE When Using Ranked Indexes 47

COSI−F−BUGCHECK, internal consistency failure
Exception occurred at PSII2SPLITNODE + 00000390
Called from PSII2CASETOPM1 + 000006C8
Called from PSII2INSERTTREE + 000001FC
Called from RDMS$$KOD_INSERT_TREE + 00002954

For indexes with more than one key value, the bugcheck footprint would be slightly different.

COSI−F−BUGCHECK, internal consistency failure
Exception occurred at PSII2SPLITNODE + 00000390
Called from PSII2BALANCE + 00000DEC
Called from PSII2INSERTT + 00000548
Called from PSII2INSERTT + 0000042C

The index is not corrupt but repeated attempts to insert such a record will fail with the same exception. If the
index is dropped, the row may be inserted, and the index can be rebuilt correctly. A rebuild of the index would
likely eliminate the bugcheck.

The problem can be avoided by either using alternate index types or adding fields to the key value to make the
index more unique.

This problem has been corrected in Oracle Rdb Release 7.0.8.1.

3.1.9 Connection Name Longer than 31 Characters
Mishandled

Bug 4380993

If a connection name was submitted which had greater than the allowed length of 31 characters, the name
would be silently truncated. This has been corrected so that the CONNECT statement is rejected with a
%SQL−E−CONTOOBIG error.

In addition, if a SET CONNECT or DELETE CONNECT statement were submitted with a name larger than
31 characters, the error text associated with the returned %SQL−E−NOSUCHCON error sometimes contained
garbage characters. This has been fixed so that the garbage characters will no longer appear.

As a workaround, use a connection name of 31 characters or less.

This problem has been corrected in Oracle Rdb Release 7.0.8.1.

Oracle® Rdb for OpenVMS

3.1.9 Connection Name Longer than 31 Characters Mishandled 48

3.2 SQL Errors Fixed

3.2.1 Dynamic SQL Rounds Results from Division Operator

Bug 4165206

In previous versions of Oracle Rdb, the Dynamic SQL interface would determine the result data type using the
type and scale of the dividend. This lead to rounded results if the dividend was a fixed point value. With this
release of Oracle Rdb, all numeric division computations return a REAL or DOUBLE PRECISION value.

The following example shows the behavior in prior versions.

$ r test$tools:tester
Enter statement:
attach 'filename sql$database';
Enter statement:
select 1/2 from rdb$database;
 0/: 1
Enter statement:

In this example the result (0.5) is rounded to the target type of INTEGER to yield a (possibly unexpected)
value 1. Now Dynamic SQL uses a floating result and gives the expected result.

$ r test$tools:tester
Enter statement:
attach 'filename sql$database';
Enter statement:
select 1/2 from rdb$database;
 0/: 0.500000
Enter statement:

This problem has been corrected in Oracle Rdb Release 7.0.8.1.

3.2 SQL Errors Fixed 49

3.3 LogMiner Errors Fixed

3.3.1 RMU /UNLOAD /AFTER_JOURNAL Incorrect Settings
in Null Bit Vector

Bug 4367366

With some combinations of table definition modifications with adding and removing fields, it was possible for
a table's maximum null bit vector length to be incorrectly calculated by the Oracle Rdb LogMiner(tm). The
incorrect length would be used internally by the RMU /UNLOAD /AFTER_JOURNAL command and could
result in an incorrect null bit vector content being generated for the output stream.

As a possible workaround, unloading the table data from the database, dropping and recreating the table and
then reloading the content would cause the table's maximum field identification to be reset and the RMU
/UNLOAD /AFTER_JOURNAL command would then work correctly.

This problem has been corrected in Oracle Rdb Release 7.0.8.1. The RMU /UNLOAD /AFTER_JOURNAL
command now correctly determines the maximum field ID and the null bit vector length.

3.3 LogMiner Errors Fixed 50

Chapter 4
Enhancements Provided in Oracle Rdb Release
7.0.8.1

Chapter 4Enhancements Provided in Oracle Rdb Release 7.0.8.1 51

4.1 Enhancements Provided in Oracle Rdb Release
7.0.8.1

4.1.1 New DEFAULTS Qualifier Added to RMU Extract

This release of Oracle Rdb adds a new DEFAULTS qualifier to RMU Extract.

Defaults=defaults−list
This qualifier is used to change the output of the RMU Extract command. The following defaults can
be modified with the Defaults qualifier:

Allocation
NoAllocation
When creating a test database using the RMU Extract generated script, the allocation from the
source database may not be appropriate. The ALLOCATION keyword can be used to specify
an alternate value to be used by all storage areas or the NOALLOCATION keyword can be
used to cause the clause to be omitted from the CREATE STORAGE MAP syntax. The
default behavior, that is when neither keyword is used, is to use the allocation recorded in the
database for each storage area. See also the SNAPSHOT_ALLOCATION keyword.

♦

Date_format
NoDate_format
By default, RMU Extract assumes that DATE types will be SQL standard compliant (that is
DATE ANSI) and that the builtin function CURRENT_TIMESTAMP will return a
TIMESTAMP(2) value. If your environment uses DATE VMS exclusively, then you can
modify the default by specifying the default DATE_FORMAT=VMS. The legal values are
described in the Oracle Rdb SQL Reference Manual in the SET DEFAULT DATE FORMAT
section. The default is DATE_FORMAT=SQL92.
Use NODATE_FORMAT to omit the setting of this session attribute from the script.

♦

Dialect
NoDialect
For some extracted SQL scripts, the language dialect is required to be specified. The
DIALECT keyword can be used to supply a specified dialect for the script. The legal values
for this option can be found in the Oracle Rdb SQL Reference Manual in the SET DIALECT
section. The default is NODIALECT.

♦

Language
NoLanguage
RMU Extract uses the process language, that is the translated value of SYS$LANGUAGE or
ENGLISH, for the SET LANGUAGE command. However, if the script is used on a different
system then this language might not be appropriate. The LANGUAGE keyword can be used
to supply a specified language for the script. Legal language names are defined by the
OpenVMS system logical name table. Examine the logical name SYS$LANGUAGES for the
current setting. Use NOLANGUAGE to omit this command from the script.

♦

Quoting_rules
NoQuoting_rules
The QUOTING_RULES keyword can be used to supply a specified setting for the script. The
legal values for this option can be found in the Oracle Rdb SQL Reference Manual in the SET
QUOTING RULES section. The default is QUOTING_RULES=SQL92. Please note that
RMU Extract assumes that SQL keywords and names containing non−ASCII character set
values will be quoted.

♦

•

4.1 Enhancements Provided in Oracle Rdb Release 7.0.8.1 52

Snapshot_allocation
NoSnapshot_allocation
When creating a test database from the RMU Extract output, the snapshot file allocation from
the source database may not be appropriate. The SNAPSHOT_ALLOCATION keyword can
be used to specify an alternate value to be used by all snapshot areas or the
NOALLOCATION keyword can be used to cause the "snapshot allocation is" clause to be
omitted. The default behavior (that is when neither keyword is used), is to use the snapshot
allocation stored in the database for each snapshot area. See also the ALLOCATION
keyword.

♦

Oracle® Rdb for OpenVMS

4.1 Enhancements Provided in Oracle Rdb Release 7.0.8.1 53

Chapter 5
Enhancements Provided in Oracle Rdb Release
7.0.8

Chapter 5Enhancements Provided in Oracle Rdb Release 7.0.8 54

5.1 Enhancements Provided in Oracle Rdb Release
7.0.8

5.1.1 Support for OpenVMS Version 8.2

This version of Rdb, Release 7.0.8, supports HP's OpenVMS Version 8.2 Release.

5.1.2 RDM$BIND_SNAP_QUIET_POINT Logical Reinstated

Bug 3908414

Over the years, various problems have been reported related to quiet point backups. In particular, database
backups and journal backups would sometimes fail with the following error:

%RMU−F−TIMEOUT, timeout on quiet

Quiet point backups are required so that recovery of a journal can be done without always requiring previous
journals. Full database backups can avoid lock conflicts if they wait for the quiet point lock. See the
documentation for the RMU Backup commands for more information regarding quiet point backups.

Lock timeout errors for the quiet lock are intended to be returned when a long running update transaction has
not completed within the timeout period. However, Oracle Rdb Release 6.0 forced all transactions (read−only
or read−write) to obtain the quiet point lock when starting. That greatly increased the incidence of timeout
errors from backups. To remedy this situation, a special logical name, RDM$BIND_SNAP_QUIET_POINT,
was implemented that would force processes starting read−only transactions to release the quiet point lock. If
that logical was defined to the value 0 then read−only transactions would not obtain the quiet point lock.

Defining the RDM$BIND_SNAP_QUIET_POINT logical to 0 would usually resolve problems with timeouts
on the quiet lock, but it would effectively disable the fast commit performance feature for applications that
often switched between read−only and read−write transactions. (See Bug 884004.) To remedy that situation,
the transaction start code was modified to retain the quiet lock during read−only transactions but release the
lock during the read−only transaction if a backup process started. With this change, the
RDM$BIND_SNAP_QUIET_POINT lock logical could be defined without impacting the performance of the
fast commit feature. That change was introduced in Releases 7.0.6.3 and 7.1.0.1.

The previous fix resolved performance problems, but the logical still could not be defined to 0 if the Hot
Standby feature was being used. (See Bug 2656534.) If the Hot Standby feature was being utilized, the logical
had to be undefined, or defined to the default value of 1. Applications that utilized Hot Standby were still
subject to undeserved timeouts from backup commands. In Releases 7.0.7.1 and 7.1.2, the Hot Standby
feature was modified so that read−only transactions were not required to hold the quiet point lock. Also,
because read−only processes would usually release the quiet point lock when a backup started, the
RDM$BIND_SNAP_QUIET_POINT logical was completely removed.

After the above changes, quiet lock timeouts were no longer an issue for most applications. However, a
read−only transaction would only release the quiet point lock when Oracle Rdb had returned control to the
user application. Some complicated queries could execute for an exceptionally long period of time before
returning a row to the user application and thus might not release the quiet lock in time to prevent timeout

5.1 Enhancements Provided in Oracle Rdb Release 7.0.8 55

errors for the backup process. For example, read−only queries that executed aggregate functions such as SUM
or AVERAGE on large sets of rows, or queries that required sorts of large sets of rows before any rows were
returned could sometimes not release the quiet point lock before the backup command timed out. (See Bug
3908414.) In addition, any update transaction that started after the backup process requested the quiet point
lock would stall until the long running read−only request returned control to the user application. That means
that it was possible for many database users to stall waiting for the read−only transaction to complete, even
though they had released the quiet point lock.

This release of Oracle Rdb reinstates the RDM$BIND_SNAP_QUIET_POINT logical so that read−only
transactions can be forced to release the quiet point lock before starting. The logical now has a slightly
different meaning than the original implementation. The default value is still 1, but that value now signifies
that all transactions will hold the quiet point lock until a backup process requests it. Read−only transactions
will not obtain the quiet point lock; only read−write requests will obtain the quiet point lock. This is the
behavior that was introduced in response to Bug 884004. If the logical is defined to be 0, then read−only
transactions will always release the quiet point lock at the beginning of the transaction, regardless of the
existence of a backup process. That implies that all modified buffers in the buffer pool have to be written to
disk before the transaction proceeds. Applications that utilize the fast commit feature and often switch
between read−only and read−write transactions within a single attach may experience performance
degradation if the logical is defined to 0. This is the behavior that was in place prior to Releases 7.0.6.3 and
7.1.0.1.

Oracle Corporation recommends that you do not define the RDM$BIND_SNAP_QUIET_POINT logical for
most applications. If the scenario described in Bug 3908414 is being encountered, the logical can be defined
to 0 to force read−only transactions to always release the quiet point lock. Rather than define the logical
system−wide, this logical can be defined for specific jobs that are likely to execute for an extensive period of
time before returning to the user application. This parameter may also be manipulated from the RMU Show
Statistics locking dashboard. That way most users will not have to sacrifice fast commit performance when
switching between read−only and read−write transactions. As of releases 7.0.7.1 and 7.1.2, Hot Standby is no
longer affected by this logical so Hot Standby is not a factor when determining how to define the logical.

5.1.3 RMU Unload After_Journal/Ignore Old_Version
Keyword

The RMU Unload After_Journal command treats non−current record versions in the AIJ file as a fatal error
condition. That is, attempting to extract a record that has a record version not the same as the table's current
maximum version results in a fatal error.

There are, however, some very rare cases where a verb rollback of a modification of a record may result in an
old version of a record being written to the after−image journal even though the transaction did not actually
complete a successful modification to the record. The RMU Unload After_Journal command detects the old
record version and aborts with a fatal error in this unlikely case.

The RMU Unload After_Journal command now accepts a new keyword to partially work around this case.
The Ignore qualifier has been enhanced to include the keyword Old_Version. When this keyword is present,
the RMU Unload After_Journal command displays a warning message for each record that has a non−current
record version and the record is not written to the output stream. The Old_Version keyword accepts an
optional list of table names to indicate that only the specified tables are permitted to have non−current record
version errors ignored.

Oracle® Rdb for OpenVMS

5.1.3 RMU Unload After_Journal/Ignore Old_Version Keyword 56

5.1.4 New Features in RMU Extract

There have been several enhancements to the RMU Extract command. The following description of the
command is the RMU Extract command chapter as it would appear in the Oracle RMU Reference Manual for
Release 7.0.8.

RMU Extract Command

Reads and decodes Oracle Rdb metadata and reconstructs equivalent statements in Relational Database
Operator (RDO) or SQL (structured query language) code for the definition of that database. These statements
can either be displayed or extracted. You can use these statements to create your database again if you no
longer have the RDO or SQL code that defined your database.

In addition, you can direct the RMU Extract command to produce output for the following:

An SQL or RDO IMPORT script (Items=Import)•
An RMU Unload command for each table (Items=Unload)•
An RMU Load command for each table (Items=Load)•
An RMU Set Audit command for the database (Items=Security)•
An RMU Verify command for the database (Items=Verify)•

DESCRIPTION

The RMU Extract command decodes information and reconstructs equivalent commands in the language you
select with the Language qualifier for the definition of that database.

You can extract the definitions to either a file or to SYS$OUTPUT. The RMU Extract command extracts the
following character set information:

For databases:
The database default character set♦
The national character set♦

•

For domains:•

Oracle® Rdb for OpenVMS

5.1.4 New Features in RMU Extract 57

The character set of each character data type domain♦
The length in characters of each character data type domain♦

For tables:
The character set of each character data type column♦
The length in characters of each character data type column♦

•

The RMU Extract command may enclose object names in double quotation marks to preserve the uppercase
and lowercase characters, to represent different character sets, or to allow processing of SQL reserved
keywords.

COMMAND PARAMETERS

root−file−spec

The file specification for the database root file from which you want to extract definitions.
Note that you do not need to specify the file extension. If the database root file is not found,
the command exits with a "file not found" error.

COMMAND QUALIFIERS

Items[=item−list]

Allows you to extract and display selected definitions. Note that each of the item names can
be combined to provide shorter command lines such as the following:

$ RMU/EXTRACT/NOLOG/ITEMS=(ALL,NODATABASE) MF_PERSONNEL

If you omit the Items qualifier from the command line or specify it without any options, the
action defaults to Items=All.

The following options can be specified with the Items qualifier:

All
Indicates that all database items are to be extracted. This is the default and includes
all items except Alter_Database, Revoke_entry, Import, Load, Protections, Security,
Unload, Verify, Volume, and Workload options. You can use either All or Noall in
combination with other items to select specific output.
In the following example, the Items=All option causes all the definitions except for
Triggers to be extracted and displayed:

$ RMU/EXTRACT/ITEMS=(ALL,NOTRIGGERS) MF_PERSONNEL

The following example displays domain and table definitions. Note that the Noall
option could have been omitted:

$ RMU/EXTRACT/ITEMS=(NOALL, DOMAIN, TABLE) MF_PERSONNEL

♦

Alter_Database (or Change_Database)
Displays the physical database after−image journal object definition.

♦

Oracle® Rdb for OpenVMS

COMMAND PARAMETERS 58

Catalog
Displays all contents of the catalog created for an SQL multischema database. This
item is ignored if the interface is RDO.

♦

Collating_Sequences
Displays all the collating sequences defined for the database that you select. Note that
Oracle Rdb does not save the name of the source OpenVMS National Character Set
(NCS) library and the name becomes the defined logical, NCS$LIBRARY, by
default.

♦

Constraints
Noconstraints
Table and column constraints are included in the output of the Items=Table qualifier.
If you specify Item=Noconstraints, constraint information is not extracted for any
table. If you specify the Language=SQL qualifier, the default is to have
Item=Constraints enabled when tables are extracted.
To extract all constraints as an ALTER TABLE statement, use the Item=Constraint
and Option=Defer_Constraints qualifiers. To force all constraints to be defined after
tables are defined, use the Item=Tables and Option=Defer_Constraints qualifiers.

♦

Database
Displays the database attributes and characteristics. This includes information such as
the database root file name, the number of buffers, the number of users, the repository
path name, and the characteristics for each storage area.
If you specify RMU Extract with the Option=Nodictionary_References qualifier, the
data dictionary path name is ignored.

♦

Domains (or Fields)
Displays the domain definitions. If the domain was originally defined using the data
dictionary path name, the output definition shows this. If the
Option=Nodictionary_References qualifier is specified, the data dictionary path name
is ignored and the column attributes are extracted from the system tables.

♦

Functions
Displays external function definitions.

♦

Import
Generates an RDO or SQL IMPORT script that defines every storage area and row
cache. The Language qualifier determines whether Oracle RMU generates an RDO or
SQL IMPORT script (If you specify the Language=SQL or the
Language=ANSI_SQL qualifier, the same SQL IMPORT script is generated.)
Because the RDO interface does not accept many of the database options added to
recent versions of Oracle Rdb, Oracle Corporation recommends that you specify the
Language=SQL qualifier (or accept the default).
The Items=Import qualifier is useful when you want to re−create a database that is the
same or similar to an existing database. Editing the file generated by Oracle RMU to
change allocation parameters or add storage areas and so on is easier than writing
your own IMPORT script from scratch.
When Oracle RMU generates the IMPORT script, it uses an interchange file name of
rmuextract_rbr in the script. Therefore, you must either edit the IMPORT script
generated by Oracle RMU to specify the interchange file that you want to import, or
assign the logical name RMUEXTRACT_RBR to your interchange file name. (An
interchange file is created by an SQL or RDO EXPORT statement.) See Example 14
in the Examples section.

♦

Indexes (or Indices)
Displays index definitions, including storage map information.

♦

Oracle® Rdb for OpenVMS

COMMAND PARAMETERS 59

Load
Unload
Generates a DCL command procedure containing an RMU Load or RMU Unload
command for each table in the database. This item must be specified explicitly, and is
not included by default when you use the Items=All qualifier.
Oracle RMU generates the Fields qualifier for the Load and Unload scripts when you
specify the Option=Full qualifier. If you do not specify the Option=Full qualifier, the
scripts are generated without the Fields qualifier.
If you specify the RMU Extract command with the Item=Unload qualifier, DCL
commands are added to the script to create a file with type .COLUMNS. This file
defines all the unloaded columns. The file name of the .COLUMNS file is derived
from the name of the extracted table. You can reference the file by using the "@"
operator within the Fields qualifier for the RMU Load and RMU Unload commands.

♦

Module
Displays procedure and function definitions. This item is valid only when the
Language specification is SQL; it is ignored if the Language specification is RDO or
ANSI_SQL.

♦

Outlines
Displays query outline definitions. This item is valid only when the Language
specification is SQL; it is ignored if the Language specification is RDO or
ANSI_SQL.

♦

Procedures
Extracts external procedures.

♦

Protections
Displays the protection access control list (ACL) definitions. If the protections are
defined using SQL ANSI semantics, they cannot be represented in RDO. In this case,
the diagnostic message warns you that the protections must be extracted using the
Language=SQL qualifier. If you specify Language=ANSI_SQL, a diagnostic
message warns you that the ACL−style protections cannot be extracted in ANSI
format. You must explicitly specify the Protections option. It is not included by
default when you use the Items=All qualifier.

♦

Revoke_Entry
Extracts a SQL or RDO script that deletes the protections from all access control lists
in the database: database, table, column, module, function, and procedure.
The output script contains a series of SQL REVOKE ENTRY statements (or
DELETE PROTECTION statements if the language selected is RDO) that remove
the access control entry for the user and all objects.

♦

Schema
Displays the schema definitions for an SQL multischema database. This option is
ignored if the interface is RDO.

♦

Security
Displays RMU Audit commands based on information in the database. This item
must be specified explicitly, and is not included by default when you use the
Items=All qualifier.

♦

Storage_Maps
Displays storage map definitions, including the list (segmented string) storage map.

♦

Tables (or Relations)
Displays table definitions in the same order in which they were created in the
database.
If the table was originally defined using the data dictionary path name, that path name
is used for the definition.

♦

Oracle® Rdb for OpenVMS

COMMAND PARAMETERS 60

If you specify the Option=Nodictionary_References qualifier, the data dictionary path
name is ignored and the table attributes are extracted from the system tables.
If Item=Noconstraints is specified, constraint information is not extracted for any
table.
The Items=Tables qualifier handles domains in the following ways:

The output for this item reflects the original definitions. If a column is based
on a domain of a different name, the BASED ON clause is used in RDO, and
the domain name is referenced by SQL.

◊

Any columns that are based on fields in a system table are processed but
generate warning messages.

◊

Certain domains created using RDO in a relation definition cannot be
extracted for RDO because it is not possible to distinguish columns defined
using a shorthand method as shown in the example that follows. In this case,
the column FIELD_1 becomes or is defined as a domain.

DEFINE RELATION REL1.
 FIELD_1 DATATYPE IS TEXT SIZE 10.
END.

However, this type of definition in SQL causes special domains to be created
with names starting with SQL$. In this case, the SQL domain is translated
into the following data type:

CREATE TABLE TAB1
 (COLUMN_1 CHAR(10));

◊

The output for this item also includes the table−level constraints that can be applied:
PRIMARY KEY, FOREIGN KEY, NOT NULL, UNIQUE, and CHECK. In the case
of the CHECK constraint, the expression might not be translated to or from RDO and
SQL due to interface differences.
Triggers
Displays trigger definitions.

♦

Verify
Causes the generation of an optimal DCL command procedure containing multiple
RMU Verify commands. Using this command procedure is equivalent to performing
a full verification (RMU Verify with the All qualifier) for the database. This
command procedure can be broken down further into partial command scripts to
perform partial verify operations. These partial command scripts can then be
submitted to different batch queues to do a full verify operation in parallel, or they
can be used to spread out a full verify operation over several days by verifying a
piece of the database at a time.
A partitioning algorithm is a procedure to determine what portions of the database
should be verified in the same command script. For example, areas with interrelations
should be verified with the same partial command script. A partitioning algorithm
considers the following when creating a partial command script from the equivalent
RMU Verify command with the All qualifier:

Each storage area is assigned to a partition.1.
For each table in the database, if the table is not partitioned, the table is put in
the partial command script corresponding to that storage area; otherwise, if
the table is partitioned across several storage areas, the partitions
corresponding to all of the storage areas are merged into one partial

2.

♦

Oracle® Rdb for OpenVMS

COMMAND PARAMETERS 61

command script and the table is added to this partial command script.
For each index in the database, the process shown in step 2 is followed.3.
For an index on a table, the index and table are merged into one partial
command script.

4.

The scripts of partial RMU Verify commands are written in the form of a command
procedure. Each partial command script is preceded by a label of the form
STREAM_n: where n is an integer greater than 1. For example, to execute the
command at label STREAM_3:, invoke the command procedure by using the
following syntax:

$ @<command−procedure−name> STREAM_3

The resultant command procedure is set up to accept up to four parameters, P1, P2,
P3, and P4, as shown in Table 5−1.

Table 5−1 Parameters for Generated Command File

Parameter Option Description

P1 Stream_n

Specifies the command stream to be executed. The
variable n is the "number" of the RMU Verify
command stream to be executed. If omitted, all
command streams are executed.

P2 [No]Log
Specifies whether to use the Log qualifier in the RMU
Verify command line. If omitted, the DCL verify
switch value is used.

P3
Read_Only |
Protected |
Exclusive

Provides the RMU Verify
Transaction_Type value. If omitted, Transaction_Type
= Protected is used.

P4
Specifies the name of the output file for the RMU
Verify Output qualifier. If omitted, Output =
SYS$OUTPUT is used.

Views
Displays view definitions. If the database was defined using SQL, it is possible that
the view cannot be represented in RDO. In this case, the diagnostic message warns
that the view definition is being ignored, and the user should use LANGUAGE=SQL
to extract the view. Note the following transformations the RMU Extract command
makes when it cannot precisely replicate the SQL source code:

The RMU Extract command cannot precisely replicate derived table column
names or correlation names for any select expression.
The RMU Extract command generates new names for correlation names (C
followed by a number) and derived table column names (F followed by a
number). In some cases the derived table column names will be inherited
from the nested table columns.
For example, suppose you create a view, as follows:

SQL> ATTACH 'FILENAME mf_personnel';
SQL> CREATE VIEW DERIVED_1

◊

♦

Oracle® Rdb for OpenVMS

COMMAND PARAMETERS 62

cont> (F1) AS
cont> SELECT CAST(AVG(JOB_COUNT) AS INTEGER(2))
cont> FROM (SELECT EMPLOYEE_ID, COUNT (*)
cont> FROM JOB_HISTORY
cont> GROUP BY EMPLOYEE_ID) AS EMP_JOBS (EMPLOYEE_ID, JOB_COUNT);
SQL> COMMIT;

If you issue the following RMU Extract command, you receive the output
shown:

$ rmu/extract/item=view/option=(match:DERIVED_1%,noheader,filename_only) −
mf_personnel
set verify;
set language ENGLISH;
set default date format 'SQL92';
set quoting rules 'SQL92';
set date format DATE 001, TIME 001;
attach 'filename MF_PERSONNEL';
create view DERIVED_1
 (F1) as
 (select
 CAST(avg(C2.F2) AS INTEGER(2))
 from
 (select C4.EMPLOYEE_ID, count(*)
 from JOB_HISTORY C4
 group by C4.EMPLOYEE_ID)
 as C2 (F1, F2));

commit work;

The RMU Extract command cannot generate the original SQL source code
for the user−supplied names of AS clauses. This is particularly apparent
when the renamed select expression is referenced in an ORDER BY clause.
In such a case, the RMU Extract command generates correlation names in the
form RMU$EXT_n where n is a number.
For example, suppose you create a view, as follows:

SQL> SET QUOTING RULES 'SQL92';
SQL> CREATE DATA FILE xyz;
SQL> CREATE TABLE DOCUMENT
cont> (REPORT CHAR(10));
SQL> CREATE TABLE REPORTING
cont> (NAME CHAR(5));
SQL> CREATE TABLE "TABLES"
cont> (CODTAB CHAR(5));
SQL> CREATE VIEW VIEW_TEST
cont> (CREDIT,
cont> CODTAB,
cont> CODMON) AS
cont> SELECT
cont> C1.NAME,
cont> C2.CODTAB,
cont> (SELECT C7.REPORT FROM DOCUMENT C7) AS COM
cont> FROM REPORTING C1, "TABLES" C2
cont> ORDER BY C1.NAME ASC, C2.CODTAB ASC, COM ASC;
SQL>

If you issue the following RMU Extract command, you receive the output

◊

Oracle® Rdb for OpenVMS

COMMAND PARAMETERS 63

shown:

$ RMU/EXTRACT/ITEM=VIEW XYZ.RDB

.

.

.
create view VIEW_TEST
 (CREDIT,
 CODTAB,
 CODMON) as
 select
 C1.NAME,
 C2.CODTAB,
 (select DOCUMENT.REPORT from DOCUMENT) AS RMU$EXT_1
 from REPORTING C1, "TABLES" C2
 order by C1."NAME" asc, C2.CODTAB asc, RMU$EXT_1 asc;

Volume
Displays cardinality information in a PDL−formatted file for use by Oracle Expert for
Rdb. This item must be specified explicitly, and is not included by default when the
Items=All qualifier is used.

♦

Workload
Generates a DCL command language script. The script is used with the RMU Insert
Optimizer_Statistics command to extract the work load and statistics stored in the
RDB$WORKLOAD table. The unloaded information can be applied after a new
database is created using the SQL EXPORT and IMPORT statements, or it can be
applied to a similar database for use by the RMU Collect
Optimizer_Statistics/Statistic=Workload command.
This item must be specified explicitly, and is not included by default when the
Items=All qualifier is used. The default is Noworkload.
You can modify the output of the Item=Workload qualifier by specifying the
following keywords with the Option qualifier:

Audit_Comment
Each RMU Insert Optimizer_Statistics statement is preceded by the created
and altered date for the workload entry. The default is Noaudit_comment.

◊

Filename_Only
The database file specification output for the RMU Insert
Optimizer_Statistics statement is abbreviated to just the filename.

◊

Match
A subset of the workload entries based on the wildcard file name is selected.

◊

♦

Language=lang−name

Allows you to select one of the following interfaces:

SQL
When you specify the Language=SQL qualifier, Oracle RMU generates the Oracle
Rdb SQL dialect. The Oracle Rdb SQL dialect is a superset of SQL92 Entry level,
with language elements from Intermediate and Full SQL92 levels. It also contains
language elements from SQL:1999 and extensions specific to Oracle Rdb.

♦

ANSI_SQL
When you specify the Language=ANSI_SQL qualifier and specify the
Option=Normal qualifier, Oracle RMU tries to generate ANSI SQL statements that
conform to the ANSI X3.135−1989 SQL standard.

♦

Oracle® Rdb for OpenVMS

Language=lang−name 64

When you specify the Language=ANSI_SQL qualifier and the Option=Full qualifier,
Oracle RMU tries to generate SQL statements that conform to the current ANSI and
ISO SQL Database Language standards. Please refer to the Oracle Rdb SQL
Reference Manual for details on the conforming SQL language standards.
Regardless of the Option parameter you specify, any Oracle Rdb specific features
(such as DATATRIEVE support clauses and storage maps) are omitted.
RDO
When you specify the RDO language option, Oracle RMU generates RDO
statements.

♦

The default is Language=SQL.

The Language qualifier has no effect on the output generated by the Items=Load,
Items=Unload, and Items=Verify qualifiers. This is because these qualifiers generate scripts
that contain Oracle RMU commands only.

Log[=log−file]

Nolog

Enable or disables log output during execution of the RMU Extract command. The log
includes the current version number of Oracle Rdb, and the values of the parameter and
qualifiers. The default is Nolog. The default file extension is .log. If you specify Log without
specifying a file name, output is sent to SYS$OUTPUT.

Options=options−list

This qualifier is used to change the output of the RMU Extract command. This qualifier is
not applied to output created by the Items=Unload, Items=Load, Items=Security, or the
Items=Verify qualifier.

The following options can be specified with the Options qualifier:

Audit_Comment
Noaudit_Comment
Annotates the extracted objects with the creation and last altered timestamps as well
as the username of the creator. The date and time values are displayed using the
current settings of SYS$LANGUAGE and LIB$DT_FORMAT. Noaudit_Comment
is the default.

♦

Cdd_Constraints
Nocdd_Constraints
Specifies that tables extracted by pathname include all constraints. The
Option=Nocdd_Constraints qualifier is equivalent to the Option=Defer_Constraints
qualifier for tables with a pathname. This option is ignored if Item=Noconstraints is
specified.
When you specify the Cdd_Constraints option and the Dictionary_References option,
the RMU Extract command does not generate ALTER TABLE statements to add
constraints, but instead assumes they will be inherited from the data dictionary.
When you use the Nocdd_Constraints option and the Dictionary_References option,
the RMU Extract command generates ALTER TABLE statements to add FOREIGN
KEY and CHECK constraints after all base tables have been created.

♦

Oracle® Rdb for OpenVMS

Log[=log−file] 65

Cdd_References
This option is an alias for Dictionary_References.

♦

Column_Volume
Directs the RMU Extract command to output the table, column, and column
segmented string cardinalities based on sorted indexes. Note that this qualifier must
be used in combination with the Items=Volume qualifier. If the Items=Volume
qualifier is omitted, cardinalities are not displayed.
RMU Extract generates data of the following type:

Volume for schema MF_PERSONNEL
 Default volatility is 5;
 Table WORK_STATUS all is 3;
 Table EMPLOYEES all is 100;
 Column EMPLOYEE_ID all is 100;
 Column LAST_NAME all is 83;

.

.

.
 Table RESUMES all is 3;
 List RESUME
 Cardinality IS 3
 Number of segments is 3
 Average length of segments is 24;

♦

Debug
Dumps the internal representation for SQL clauses such as VALID IF, COMPUTED
BY, MISSING_VALUE, DEFAULT_VALUE, CONSTRAINTS, SQL DEFAULT,
TRIGGERS, VIEWS, and STORAGE MAPS during processing. The keyword Debug
cannot be specified with the keywords Normal or Full in the same Options qualifier
list.

♦

Defer_Constraints
Nodefer_Constraints
Forces all constraints to be defined (using an ALTER TABLE statement) after all
tables have been extracted. This option is ignored if Item=Noconstraints is specified.
If Option=Nodefer_Constraints is specified, all constraints are generated with the
CREATE TABLE statement. If neither Option=Defer_Constraints nor
Option=Nodefer_Constraints is specified, the default behavior is to generate NOT
NULL, UNIQUE, and PRIMARY KEY constraints with the CREATE TABLE
statement, and generate CHECK and FOREIGN KEY constraints in a subsequent
ALTER TABLE statement.

♦

Dictionary_References
Nodictionary_References
Directs the RMU Extract command to output definitions for domains (fields) and
tables (relations) that reference data dictionary path names rather than using the
information contained in the Oracle Rdb system tables. In addition to the database
statements, this option also displays the data dictionary path name stored in the
database. Refer to Example 8 in the Examples section for an example of using this
option.
If neither the Option=Dictionary_References qualifier nor the
Option=Nodictionary_References qualifier is specified, then Oracle RMU examines
the RDB$RELATIONS and RDB$FIELDS system tables to determine whether or not
any domains or tables refer to the data dictionary. If references are made to the data
dictionary, then the Option=Dictionary_References qualifier is the default.
Otherwise, it is assumed that the data dictionary is not used, and the default is the

♦

Oracle® Rdb for OpenVMS

Log[=log−file] 66

Option=Nodictionary_References qualifier.
The Nodictionary_References keyword causes all references to the data dictionary to
be omitted from the output. This is desirable if the database definition is to be used on
a system without the data dictionary or in a testing environment.
If the Items=Database and Option=Nodictionary_References qualifiers are selected,
the data dictionary path name stored in the system table is ignored. For SQL, the no
PATHNAME clause is generated, and for RDO, the clause DICTIONARY IS NOT
USED is generated.
If the Items qualifier specifies Domain or Table, and the Option qualifier specifies
Nodictionary_References, the output definition includes all attributes stored in the
system tables.
Disable_Objects
Nodisable_Objects
Requests that all disabled objects be written to the RMU Extract output file as
disabled (see the description for the Omit_Disabled option). Disable_Objects is the
default.
The Nodisable_Objects option displays the objects but omits the disabling syntax.

♦

Domains
Nodomains
The Nodomains option is used to eliminate the domain name from within metadata
objects. The domain name is replaced by the underlying data type. This option is
designed for use with tools that do not recognize this SQL92 SQL language feature.
Effect on /Language=SQL output:

The default is Option=Domains.
A SQL script generated when Option=Nodomains was specified does not
include the domain name in the CREATE TABLE column definition,
CREATE FUNCTION or CREATE PROCEDURE parameter definitions, or
any value expression which uses the CAST function to convert an expression
to a domain data type (such as the CREATE VIEW and CREATE TRIGGER
statements).
The output generated by RMU Extract for functions and procedures in the
CREATE MODULE statement is not affected by the Option=Nodomains
option because it is based on the original source SQL for the routine body
which is not edited by the RMU Extract command.

◊

Effect on /Language=ANSI_SQL output:
The default is Option=Nodomains when the Option=Normal qualifier is
specified or is the default. The RMU Extract command does not generate a
list of domain definitions even if the Items=Domains or Items=All qualifier is
used. If you want the generated script to include a list of domain definitions,
use the Options=Domains qualifier:

$RMU/EXTRACT/LANGUAGE=ANSI_SQL/OPTION=DOMAINS databasename

Use the Option=Full qualifier to have the use of domains included in the
syntax generated for SQL92.

◊

♦

Filename_Only
Causes all file specifications extracted from the database to be truncated to only the
file name. The use of this qualifier allows for easier relocation of the new database
when you execute the created procedure.

♦

Oracle® Rdb for OpenVMS

Log[=log−file] 67

Full
Nofull
Specifies that if metadata that cannot be translated from the language that defined the
database to the equivalent construct in the language specified with the Language
qualifier (for example, DEFAULT for SQL and the language selected was RDO) then
the metadata is displayed in comments, or Oracle RMU attempts to create a
translation that most closely approximates the original construct.
Nofull is identical to the Normal option.

♦

Group_Table
Nogroup_Table
Specifies that indexes and storage maps are to be extracted and grouped by table.
The table is extracted first, than any PLACEMENT VIA index, then any storage map,
and finally all other indexes.
When the Group_Table qualifier is combined with the Option=Match qualifier, you
can select a table and its related storage map and indexes.
The default behavior is Nogroup_Table, which means that items are extracted and
grouped by type.

♦

Header
Noheader
Specifies that the script header (and section headers) are included in the extract. This
is the default. Noheader suppresses the header and because of the included date may
allow easier comparison with other database extractions using the OpenVMS
DIFFERENCES command.

♦

Limit_Volume=nn
Nolimit_Volume
Specifies the maximum amount of data to be scanned for segmented fields. The RMU
Extract command stops scanning when the limit nn is reached. The number of
segments and average length of segments are calculated from the data that was
scanned. Limit_Volume=1000 is the default.
Nolimit_Volume specifies that a full scan for segmented strings should be done.

♦

Match:match−string
The Match option allows selection of wildcard object names from the database. The
match string can contain the standard SQL wildcard characters: the percent sign (%)
to match any number of characters, and the underscore (_) to match a single
character. In addition, the backslash (\) can be used to prefix these wildcards to
prevent them from being used in matching. If you are matching a literal backslash,
use the backslash twice, as shown in the following example:

 Option=Match:"A1\\A2%"

The match string defaults to the percent sign (%) so that all objects are selected. To
select those objects that start with JOB, use the qualifier Option=Match:"JOB%".
From the mf_personnel database, this command displays the definitions for the
domains JOB_CODE_DOM and JOB_TITLE_DOM, the tables JOBS and
JOB_HISTORY, the index JOB_HISTORY_HASH, and the storage maps
JOBS_MAP and JOB_HISTORY_MAP.
The match string can be quoted as shown if the string contains spaces or other
punctuation characters used by DCL or other command language interfaces. Most
object names are space filled; therefore, follow the match string with the percent sign
(%) to match all trailing spaces.

♦

Oracle® Rdb for OpenVMS

Log[=log−file] 68

The Match option can be used in conjunction with the Item qualifier to extract
specific tables, indexes, and so on, based on their name and type.
If Group_Table is specified, the match name is assumed to match a table name;
indexes for that table will be extracted when the Items=Index qualifier is specified.
Multischema
Nomultischema
Displays the SQL multischema names of database objects. It is ignored by the
Relational Database Operator (RDO).
The Nomultischema option displays only the SQL single−schema names of database
objects.

♦

Normal
Includes only the specific source language code used to define the database. This is
the default.
In addition, this option propagates RDO VALID IF clauses as column CHECK
constraints with the attribute NOT DEFERRABLE when the Language specification
is SQL or ANSI_SQL. When an RDO VALID IF clause is converted, Oracle RMU
generates error messages similar to the following in your log file:

%RMU−W−UNSVALIDIF, VALID IF clause not supported in SQL − ignored
 for DEGREE.
%RMU−I−COLVALIDIF, changed VALID IF clause on domain DEGREE to
 column check constraint for DEGREES.DEGREE

The first message is a warning that the VALID IF clause could not be added to the
domain definition because the VALID IF clause is not supported by SQL. The second
message is an informational message that tells you the VALID IF clause was changed
to a column check constraint.

♦

Omit_Disabled
Noomit_Disabled
Causes all disabled objects to be omitted from the output of the RMU Extract
command. This includes indexes that have MAINTENANCE IS DISABLED,
USERS with ACCOUNT LOCK, and disabled triggers and constraints.
The Noomit_Disabled option causes all disabled objects to be included in the output
from the RMU Extract command. Noomit_Disabled is the default.

♦

Order_By_Name
Noorder_By_Name
Order_by_Name displays the storage area, cache, and journal names for the items
Database, Alter_Database (also known as Change_Database), and Import in
alphabetic order by the ASCII collating sequence.
Noorder_By_Name displays the storage area, cache, and journal names for the items
Database, Alter_Database, and Import in approximate definition order. The default
ordering is approximate because a DROP STORAGE AREA, DROP CACHE, or
DROP JOURNAL statement frees a slot that can be reused, thus changing the order.
Noorder_By_Name is the default.
You can use the logical name RDMS$BIND_SORT_WORKFILES to allocate work
files, if needed.

Note

If the identifier character set for the database is not MCS or ASCII,

♦

Oracle® Rdb for OpenVMS

Log[=log−file] 69

then this option is ignored. Characters from other character sets do
not sort appropriately under the ASCII collating sequence.

Volume_Scan
Directs the RMU Extract command to perform queries to calculate the cardinality of
each table, if both the Items=Volume and Options=Volume_Scan qualifiers are
specified. The default is Options=Novolume_Scan, in which case the approximate
cardinalities are read from the RDB$RELATIONS system table. The
Options=Volume_Scan option is ignored if the Items=Volume qualifier is not
selected.

♦

Width=n
Specifies the width of the output files. You can select values from 60 to 512
characters. The default of 80 characters is appropriate for most applications.

♦

Output=[out−file]

Nooutput

Names the file to which the RMU Extract command writes the data definition language
(DDL) statements. The file extension defaults to .rdo, if you specify the Language=RDO
qualifier; .sql, if you specify either the Language=SQL or the Language=ANSI_SQL
qualifier. If you specify the Volume option only, the output file type defaults to .pdl. If you
specify Load, Security, Verify, or Unload only, the output file type defaults to .com. The
default is SYS$OUTPUT. If you disable the output by using the Nooutput qualifier,
command scripts are not written to an output file. The Log output can be used to determine
which features used by the database cannot be converted to SQL.

Table 5−2 shows the effects of the various combinations of the Language and Options
qualifiers.

Table 5−2 Using Qualifiers to Determine Output Selection

Language Option Effect on Output

RDO Normal Generates RDO syntax.

Full Generates RDO syntax.

Dictionary_
References

Outputs path name references to the repository.

Nodictionary_
References

Converts path name references to the repository to RDO
syntax.

Multischema Ignored by RDO.

SQL Normal Generates SQL syntax.

Full
Tries to convert RDO specific features to SQL (for example,
the VALID IF clause).

Dictionary_
References

Outputs path name references to the data dictionary.

Nodictionary_
References

Converts path name references to the data dictionary to SQL
syntax.

Multischema Selects SQL multischema naming of objects.

Oracle® Rdb for OpenVMS

Output=[out−file] 70

ANSI_SQL Normal Generates ANSI/ISO syntax.

Full Generates ANSI/ISO SQL92 syntax supported by SQL.

Dictionary_
References

Ignored for ANSI_SQL.

Nodictionary_
References

Converts path name references to the data dictionary to SQL
syntax. This is the default for ANSI_SQL.

Multischema Selects SQL multischema naming of objects.

Any Audit_Comment Adds a comment before each definition.

Debug Annotates output where possible.

Domains
Replaces domain names for CAST expression, column and
parameter definitions, and returns clauses with SQL data
type.

Filename_Only
Truncates all file specifications extracted from the database
to only the file name.

Volume_Scan Forces a true count of Tables. Only valid for Items=Volume.

Transaction_Type[=(transaction_mode,options,...)]

Allows you to specify the transaction mode, isolation level, and wait behavior for
transactions.

Use one of the following keywords to control the transaction mode:

Automatic
When Transaction_Type=Automatic is specified, the transaction type depends on the
current database settings for snapshots (enabled, deferred, or disabled), transaction
modes available to the process, and the standby status of the database. Automatic
mode is the default.

♦

Read_Only
Starts a READ ONLY transaction.

♦

Write
Starts a READ WRITE transaction.

♦

Use one of the following options with the keyword Isolation_Level=[level] to specify the
transaction isolation level:

Read_Committed♦
Repeatable_Read♦
Serializable. Serializable is the default setting.♦

Refer to the SET TRANSACTION statement in the Oracle Rdb SQL Reference Manual for a
complete description of the transaction isolation levels.

Specify the wait setting by using one of the following keywords:

Wait
Waits indefinitely for a locked resource to become available. Wait is the default
behavior.

♦

Wait=n
The value you supply for n is the transaction lock timeout interval. When you supply

♦

Oracle® Rdb for OpenVMS

Transaction_Type[=(transaction_mode,options,...)] 71

this value, Oracle Rdb waits n seconds before aborting the wait and the RMU Extract
session. Specifying a wait timeout interval of zero is equivalent to specifying Nowait.
Nowait
Will not wait for a locked resource to become available.

♦

Usage Notes

To use the RMU Extract command for a database, you must have the RMU$UNLOAD privilege in
the root file access control list (ACL) for the database or the OpenVMS SYSPRV or BYPASS
privilege.

•

For tutorial information on using output from the RMU Extract command to load or unload a
database, refer to the Oracle Rdb Guide to Database Design and Definition.

•

Included in the output from the RMU Extract command is the SQL SET DEFAULT DATE
FORMAT statement. This SQL statement determines whether columns with the DATE data type or
CURRENT_TIMESTAMP builtin function are interpreted as VMS or SQL92 format. The RMU
Extract command always sets the default to SQL92. The SQL92 format DATE and
CURRENT_TIMESTAMP contain only the YEAR to DAY fields. The VMS format DATE and
CURRENT_TIMESTAMP contain YEAR to SECOND fields.
If your database was defined with VMS format DATE and CURRENT_TIMESTAMP, the default
SQL SET DEFAULT DATE FORMAT 'SQL92' in the Extract output causes errors to be returned
when you attempt to execute that output. For example, when you define a trigger:

SQL> CREATE TRIGGER SALARY_HISTORY_CASCADE_UPDATE
cont> AFTER UPDATE OF JOB_CODE ON JOB_HISTORY
cont> (UPDATE SALARY_HISTORY SH
cont> SET SALARY_START = CURRENT_TIMESTAMP
cont> WHERE (SH.EMPLOYEE_ID = JOB_HISTORY.EMPLOYEE_ID)
cont>) for each row;
%SQL−F−UNSDATASS, Unsupported date/time assignment from <Source>
 to SALARY_START

You can avoid these errors by editing the output from the RMU Extract command. Replace the SET
DEFAULT DATE FORMAT 'SQL92' statement with SET DEFAULT DATE FORMAT 'VMS'. If
the problem occurs in trigger definitions, you can use the CAST function instead. Specify
CAST(CURRENT_TIMESTAMP AS DATE VMS) with each trigger definition that references
CURRENT_TIMESTAMP. (You cannot use the CAST function within the DEFAULT clause of an
SQL CREATE statement).

•

The following list contains a description of what the RMU Extract command generates when it
encounters certain RDO statements:

RDO and the data dictionary have the concept of validation clauses at the domain level. The
ANSI/ISO SQL92 standard allows CHECK constraints defined on domains. While the actions
of the ANSI/ISO CHECK constraint do differ from VALID IF in some respects, the RMU
Extract command extracts the VALID IF clauses as domain CHECK constraints if you
specify the Language=SQL and Option=Full qualifiers.

♦

RDO multiline descriptions
Because the RDO interface removes blank lines in multiline descriptions, the description
saved in the metadata is not identical to that entered by the database definition. The RMU
Extract command therefore cannot completely reconstruct the original description.

♦

Some RDO trigger definitions
RDO trigger definitions that contain a trigger action within a join of two or more tables

♦

•

Oracle® Rdb for OpenVMS

Usage Notes 72

generates invalid SQL syntax. For example, the following RDO trigger definition includes a
join with an embedded ERASE statement. When the RMU Extract command encounters this
statement, Oracle RMU generates the invalid SQL trigger definition shown.

DEFINE TRIGGER EXAMPLE
 AFTER ERASE
 FOR C1 IN EMPLOYEES
 EXECUTE
 FOR C2 IN JOB_HISTORY
 CROSS C3 IN EMPLOYEES
 WITH (((C2.EMPLOYEE_ID = C3.EMPLOYEE_ID)
 AND (C2.JOB_END MISSING))
 AND (C3.EMPLOYEE_ID = C2.EMPLOYEE_ID))
 ERASE C2
 END_FOR
 FOR EACH RECORD.

CREATE TRIGGER EXAMPLE
 AFTER DELETE ON EMPLOYEES
 (DELETE FROM JOB_HISTORY C2, EMPLOYEES C3
 WHERE (((C2.EMPLOYEE_ID = C3.EMPLOYEE_ID)
 AND (C2.JOB_END IS NULL))
 AND (C3.EMPLOYEE_ID = C2.EMPLOYEE_ID))
) FOR EACH ROW;

Note that in Oracle Rdb Version 4.1 and higher, including a trigger action within a join of two
or more tables is invalid RDO syntax. For more information on this RDO restriction, see the
ERASE and MODIFY entries in RDO HELP.

Oracle CDD/Repository Version 5.3 and higher support table and column constraint definition and
maintenance through CDO. The RMU Extract command, by default, assumes all constraint
maintenance is with SQL and so follows each CREATE TABLE with an ALTER TABLE FROM
pathname to add the constraints. However, this is no longer necessary if you are using the later
versions of Oracle CDD/Repository. To disable the output of the SQL ALTER TABLE statements
which add constraints use the Option=Cdd_Constraint qualifier.

•

If the Transaction_Type qualifier is omitted from the RMU Extract command line, a READ ONLY
transaction is started against the database. This behavior is provided for backward compatibility with
prior Oracle Rdb releases. If the Transaction_Type qualifier is specified without a transaction mode,
the default value Automatic is used.

•

If the database has snapshots disabled and the Transaction_Type qualifier was omitted, the transaction
is restarted as READ WRITE ISOLATION LEVEL READ COMMITTED to reduce the number of
rows locked by operations performed with the Option=Volume_Scan qualifier enabled.

•

When Transaction_Type=Write is specified, the RMU Extract process does not attempt to write to the
database tables.

•

In previous versions, Oracle Rdb used derived column names based on position, for example, F1, F2.
With release 7.0.6.4 and later, Oracle Rdb promotes the column names from the base table into the
derived column name list. The result is a more readable representation of the view or trigger
definition.
In the following example the column name EMPLOYEE_ID is propagated through the derived table.
In previous releases this would be named using a generic label F1.

create view SAMPLE_V
 (EMPLOYEE_ID,
 COUNTS) as
 select

•

Oracle® Rdb for OpenVMS

Usage Notes 73

 C1.EMPLOYEE_ID,
 C1.F2
 from
 (select C2.EMPLOYEE_ID,
 (select count(*) from SALARY_HISTORY C3
 where (C3.EMPLOYEE_ID = C2.EMPLOYEE_ID))
 from JOB_HISTORY C2) as C1 (EMPLOYEE_ID, F2)
 order by C1.F2 asc;

The following list shows the equivalent SQL expressions matched by the RMU Extract process:
NULLIF (a, b) is eqivalent to

CASE
 WHEN a = b THEN NULL
 ELSE a
END

♦

NVL (a, ..., b) or COALESCE (a, ..., b) is equivalent to

CASE
 WHEN a IS NOT NULL THEN a
 ...
 ELSE b
END

♦

The simple CASE expression

CASE a
 WHEN b THEN v1
 WHEN NULL THEN v2
 ...
 ELSE v3
END

is equivalent to

CASE
 WHEN a = b THEN v1
 WHEN a IS NULL THEN v2
 ...
 ELSE v3
END

RMU Extract tries to decode the internal representation to as compact a SQL expression as
possible.

♦

•

The RMU Extract process decodes case expressions into ABS (Absolute) functions:
ABS(a) is equivalent to:

CASE
 WHEN a < 0 THEN −a
 ELSE a
END

In addition, similar forms of CASE expression are also converted to ABS:

•

Oracle® Rdb for OpenVMS

Usage Notes 74

CASE
 WHEN a <= 0 THEN −a
 ELSE a
END

CASE
 WHEN a > 0 THEN a
 ELSE −a
END

CASE
 WHEN a >= 0 THEN a
 ELSE −a
END

It is possible that the RMU Extract process will change existing CASE expressions into this more
compact syntax, even if they were not originally coded as an ABS function call.
If the Group_Table option is used and the Item qualifier omits one or more of the Table, Index, or
Storage_Map keywords, only the included items are displayed. For example, to extract just the
indexes for the EMPLOYEES table:

$ RMU/EXTRACT/ITEM=INDEX/OPTION=(GROUP_TABLE,MATCH=EMPLOYEES%)

To extract only the storage map and indexes for a table, use the following command:

$ RMU/EXTRACT/ITEM=(STORAGE_MAP,INDEX)/OPTION=(GROUP_TABLE, −
_$ MATCH=EMPLOYEES%)

•

If the name of the LIST storage map is not known, it can be extracted using the following generic
command:

$ RMU/EXTRACT/ITEM=STORAGE_MAP/OPTION=(GROUP_TABLE, −
_$ MATCH=RDB$SEGMENTED_STRING%)

•

Examples

Example 1

The following command extracts these database items: COLLATING_SEQUENCES, DOMAINS, TABLES,
INDEXES, STORAGE_MAPS, VIEWS, and TRIGGERS.

The All option is the default. The All or Noall option can be used in conjunction with other items to select
specific output. For example, the Items=(All,Nodatabase) qualifier selects all metadata items except the
physical database characteristics.

$ RMU/EXTRACT/ITEM=(ALL, NODATABASE) MF_PERSONNEL

Example 2

The following command generates a DCL command procedure containing an RMU Load command for each
table in the database:

Oracle® Rdb for OpenVMS

Examples 75

$ RMU/EXTRACT/ITEMS=LOAD MF_PERSONNEL

Example 3

The following command displays the protection access control list (ACL) definitions in the mf_personnel.rdb
database:

$ RMU/EXTRACT/ITEMS=PROTECTIONS MF_PERSONNEL.RDB

Example 4

The following command generates a DCL command procedure containing an RMU Unload command for
each table in the database:

$ RMU/EXTRACT/ITEMS=UNLOAD MF_PERSONNEL.RDB

Example 5

The following example displays index definitions:

$ RMU/EXTRACT/ITEMS=INDEXES MF_PERSONNEL

Example 6

The following example displays domain and table definitions. Note that the Noall option could have been
omitted.

$ RMU/EXTRACT/ITEMS=(NOALL,DOMAINS,TABLES) MF_PERSONNEL

Example 7

The following example displays definitions for domains (fields) and tables (relations) that reference data
dictionary path names rather than using the information contained in the Oracle Rdb system tables. In addition
to the database statements, it also references the data dictionary path name stored in the database, as shown in
the following example:

$ RMU/EXTRACT/LANG=SQL/ITEM=ALL/OPTION=DIC/OUTPUT=CDD_MODEL.LOG/LOG= −
_$ CDD_EXTRACT.LOG CDD_SQL_DB

Example 8

The following example creates a command procedure containing a script of partial RMU Verify commands or
verify command partitions for the mf_personnel database. This command procedure was created with the
following RMU Extract command:

$ RMU/EXTRACT/ITEM=VERIFY MF_PERSONNEL

Example 9

The following command displays a query outline definition that was previously added to the mf_personnel
database:

Oracle® Rdb for OpenVMS

Examples 76

$ RMU/EXTRACT/ITEMS=(OUTLINES) MF_PERSONNEL

Example 10

The following command displays the after−image journal (.aij) file configuration for mf_personnel:

$ RMU/EXTRACT/ITEMS=(ALTER_DATABASE) MF_PERSONNEL

Example 11

The following command displays the function definitions in mf_personnel for functions previously created
using SQL:

$ RMU/EXTRACT/ITEM=FUNCTION MF_PERSONNEL

Example 12

The following command displays the table and column cardinalities based on sorted indexes:

$ RMU/EXTRACT/OPTION=COLUMN_VOLUME/ITEM=VOLUME MF_PERSONNEL

Example 13

The following example:

Executes an SQL EXPORT statement to create an interchange file.•
Executes an RMU Extract command with the Item=Import qualifier to generate an Import script. In
addition, the Option=Filename_Only qualifier is specified to prevent full file specifications from
appearing in the SQL IMPORT script. (If full file specifications are used, you cannot test the script
without replacing the database that was exported.)

•

Defines a logical to define the interchange file name used in the Import script file.•
Executes the Import script file.•

SQL> −− Create interchange file, SAVED_PERS.RBR.
SQL> −−
SQL> EXPORT DATABASE FILENAME MF_PERSONNEL.RDB INTO SAVED_PERS.RBR;
SQL> EXIT;
$!
$ RMU/EXTRACT/ITEM=IMPORT/OPTION=FILENAME_ONLY/OUTPUT=IMPORT_PERS.SQL −
_$ MF_PERSONNEL
$ DEFINE/USER RMUEXTRACT_RBR SAVED_PERS.RBR
$!
$ SQL
SQL> @IMPORT_PERS.SQL
SQL> set language ENGLISH;
SQL> set default date format 'SQL92';
SQL> set quoting rules 'SQL92';
SQL> set date format DATE 001, TIME 001;
SQL>
SQL> −− RMU/EXTRACT for Oracle Rdb V7.0−00 1−JUL−1996 15:34:38.63
SQL> −−
SQL> −− Physical Database Definition
SQL> −−
SQL> −−−
SQL> import database from rmuextract_rbr
cont> filename 'MF_PERSONNEL'

Oracle® Rdb for OpenVMS

Examples 77

.

.

.

Example 14

The following example shows an extract from the generated script when the SYS$LANGUAGE and
LIB$DT_FORMAT symbols are defined. The language and format will default to ENGLISH and the standard
OpenVMS format if these logical names are not defined.

$ DEFINE LIB$DT_FORMAT LIB$DATE_FORMAT_002,LIB$TIME_FORMAT_001
$ DEFINE SYS$LANGUAGE french
$ RMU/EXTRACT/OUT=SYS$OUTPUT/ITEM=DOMAIN MF_PERSONNEL/OPT=AUDIT_COMMENT

.

.

.
−− Created on 8 janvier 2000 13:01:31.20
−− Never altered
−− Created by RDB_EXECUTE
−−
SQL> CREATE DOMAIN ADDRESS_DATA_1
cont> CHAR (25)
cont> comment on domain ADDRESS_DATA_1 is
cont> ' Street name';

.

.

.

Example 15

If a database has snapshots set to ENABLED DEFERRED, it may be preferable to start a read/write
transaction. In this environment, using the Transaction_type=(Read_only) qualifier causes a switch to a
temporary snapshots ENABLED IMMEDIATE state. This transition forces the READ ONLY transaction to
wait while all READ WRITE transactions complete, and then all new READ WRITE transactions performing
updates will start writing rows to the snapshot files for use by possible read−only transactions. To avoid this
problem use an RMU Extract command specifying a READ WRITE ISOLATION LEVEL READ
COMMITTED transaction.

$ RMU/EXTRACT/ITEM=TABLE/OUT=TABLES.SQL−
 /TRANSACTION_TYPE=(WRITE,ISOLATION=READ)−
 SAMPLE.RDB

Example 16

This example specifies the options which were the default transaction style in prior releases.

$ RMU/EXTRACT/ITEM=TABLE/OUT=TABLES.SQL−
 /TRANSACTION_TYPE=(READ_ONLY)−
 SAMPLE.RDB

Example 17

If the database currently has snapshots deferred, it may be more efficient to start a read−write transaction with
isolation level read committed. This allows the transaction to start immediately (a read−only transaction may
stall), and the selected isolation level keeps row locking to a minimum. This could be explicitly stated by

Oracle® Rdb for OpenVMS

Examples 78

using the following command:

$ RMU/EXTRACT−
 /TRANSACTION_TYPE=(WRITE,ISOLATION=READ_COMMITTED)−
 SAMPLE.RDB

Using a transaction type of automatic adapts to different database settings:

$ RMU/EXTRACT−
 /TRANSACTION_TYPE=(AUTOMATIC)−
 SAMPLE.RDB

Example 18

This example shows the use of the Item=Workload qualifier to create a DCL command language script for
OpenVMS systems.

$ RMU/EXTRACT/ITEM=WORKLOAD −
 SCRATCH/LOG/OPTION=(FILENAME,AUDIT)
$! RMU/EXTRACT for Oracle Rdb X7.0−00 7−SEP−2000 22:00:42.72
$!
$! WORKLOAD Procedure
$!
$!−−−
$ SET VERIFY
$ SET NOON
$
$! Created on 7−SEP−2000 10:12:26.36
$! Last collected on 7−SEP−2000 22:00:34.47
$!
$ RMU/INSERT OPTIMIZER_STATISTICS −
 SCRATCH −
 /TABLE=(CUSTOMERS) −
 /COLUMN_GROUP=(CUSTOMER_NAME) −
 /DUPLICITY_FACTOR=(4.0000000) −
 /NULL_FACTOR=(0.0000000) /LOG
$
$! Created on 7−SEP−2000 10:12:26.36
$! Last collected on 7−SEP−2000 22:00:34.58
$!
$ RMU/INSERT OPTIMIZER_STATISTICS −
 SCRATCH −
 /TABLE=(RDB$FIELDS) −
 /COLUMN_GROUP=(RDB$FIELD_NAME) −
 /DUPLICITY_FACTOR=(1.7794118) −
 /NULL_FACTOR=(0.0000000) /LOG
$

.

.

.
$ SET NOVERIFY
$ EXIT

Example 19

The following example shows the use of the Match option to select a subset of the workload entries based on
the wildcard file name.

Oracle® Rdb for OpenVMS

Examples 79

$ RMU/EXTRACT/ITEM=WORKLOAD −
 SCRATCH/LOG/OPTION=(FILENAME,AUDIT,MATCH:RDB$FIELDS%)
$! RMU/EXTRACT for Oracle Rdb X7.0−00 8−SEP−2000 10:53
$!
$! WORKLOAD Procedure
$!
$!−−
$ SET VERIFY
$ SET NOON
$
$! Created on 7−SEP−2000 15:18:02.30
$! Last collected on 7−SEP−2000 18:25:04.27
$!
$ RMU/INSERT OPTIMIZER_STATISTICS −
 SCRATCH −
 /TABLE=(RDB$FIELDS) −
 /COLUMN_GROUP=(RDB$FIELD_NAME) −
 /DUPLICITY_FACTOR=(1.0000000) −
 /NULL_FACTOR=(0.0000000) /LOG
$ SET NOVERIFY
$ EXIT

Example 20

The following example shows the use of Item options Defer_Constraints, Constraints, and Match to extract a
table and its constraints.

$ RMU/EXTRACT/ITEM=(TABLE,CONSTRAINT)−
_$ /OPTION=(FILENAME_ONLY,NOHEADER,−
_$ DEFER_CONSTRAINT,MATCH:EMPLOYEES%) −
_$ MF_PERSONNEL
set verify;
set language ENGLISH;
set default date format 'SQL92';
set quoting rules 'SQL92';
set date format DATE 001, TIME 001;
attach 'filename MF_PERSONNEL';
create table EMPLOYEES (
 EMPLOYEE_ID ID_DOM,
 LAST_NAME LAST_NAME_DOM,
 FIRST_NAME FIRST_NAME_DOM,
 MIDDLE_INITIAL MIDDLE_INITIAL_DOM,
 ADDRESS_DATA_1 ADDRESS_DATA_1_DOM,
 ADDRESS_DATA_2 ADDRESS_DATA_2_DOM,
 CITY CITY_DOM,
 STATE STATE_DOM,
 POSTAL_CODE POSTAL_CODE_DOM,
 SEX SEX_DOM,
 BIRTHDAY DATE_DOM,
 STATUS_CODE STATUS_CODE_DOM);
 comment on table EMPLOYEES is
 'personal information about each employee';

alter table EMPLOYEES
 add constraint EMP_SEX_VALUES
 check(EMPLOYEES.SEX in ('M', 'F', '?'))
 deferrable
 add constraint EMP_STATUS_CODE_VALUES
 check(EMPLOYEES.STATUS_CODE in ('0', '1', '2', 'N'))
 deferrable
 alter column EMPLOYEE_ID

Oracle® Rdb for OpenVMS

Examples 80

 constraint EMPLOYEES_PRIMARY_EMPLOYEE_ID
 primary key
 deferrable;

commit work;

Example 21

The following example shows the use of the option Group_Table to extract a table and its indexes:

$ rmu/extract/item=(table,index)−
_$ /option=(group_table,match=employees%,−
_$ filename_only,noheader) db$:mf_personnel
set verify;
set language ENGLISH;
set default date format 'SQL92';
set quoting rules 'SQL92';
set date format DATE 001, TIME 001;
attach 'filename MF_PERSONNEL';
create table EMPLOYEES (
 EMPLOYEE_ID ID_DOM
 constraint EMPLOYEES_PRIMARY_EMPLOYEE_ID
 primary key
 deferrable,
 LAST_NAME LAST_NAME_DOM,
 FIRST_NAME FIRST_NAME_DOM,
 MIDDLE_INITIAL MIDDLE_INITIAL_DOM,
 ADDRESS_DATA_1 ADDRESS_DATA_1_DOM,
 ADDRESS_DATA_2 ADDRESS_DATA_2_DOM,
 CITY CITY_DOM,
 STATE STATE_DOM,
 POSTAL_CODE POSTAL_CODE_DOM,
 SEX SEX_DOM,
 BIRTHDAY DATE_DOM,
 STATUS_CODE STATUS_CODE_DOM);
 comment on table EMPLOYEES is
 'personal information about each employee';

 create unique index EMPLOYEES_HASH
 on EMPLOYEES (
 EMPLOYEE_ID)
 type is HASHED SCATTERED
 store
 using (EMPLOYEE_ID)
 in EMPIDS_LOW
 with limit of ('00200')
 in EMPIDS_MID
 with limit of ('00400')
 otherwise in EMPIDS_OVER;

 create unique index EMP_EMPLOYEE_ID
 on EMPLOYEES (
 EMPLOYEE_ID
 asc)
 type is SORTED
 node size 430
 disable compression;

 create index EMP_LAST_NAME
 on EMPLOYEES (

Oracle® Rdb for OpenVMS

Examples 81

 LAST_NAME
 asc)
 type is SORTED;

commit work;

alter table EMPLOYEES
 add constraint EMP_SEX_VALUES
 check(EMPLOYEES.SEX in ('M', 'F', '?'))
 deferrable
 add constraint EMP_STATUS_CODE_VALUES
 check(EMPLOYEES.STATUS_CODE in ('0', '1', '2', 'N'))
 deferrable;

commit work;

Example 22

The following example shows the output when you use the Item=Revoke_Entry qualifier:

$ RMU/EXTRACT/ITEM=REVOKE_ENTRY ACCOUNTING_DB
...
−− Protection Deletions
−−
−−

revoke entry
 on database alias RDB$DBHANDLE
 from [RDB,JAIN];

revoke entry
 on database alias RDB$DBHANDLE
 from [RDB,JONES];

revoke entry
 on database alias RDB$DBHANDLE
 from PUBLIC;

revoke entry
 on table ACCOUNT
 from [RDB,JONES];

revoke entry
 on table ACCOUNT
 from PUBLIC;

revoke entry
 on table ACCOUNT_BATCH_PROCESSING
 from [RDB,JONES];

revoke entry
 on table ACCOUNT_BATCH_PROCESSING
 from PUBLIC;
revoke entry
 on table BILL
 from [RDB,JONES];

revoke entry
 on table BILL
 from PUBLIC;

Oracle® Rdb for OpenVMS

Examples 82

...

Example 23

The following example shows sample output for the WORK_STATUS table of MF_PERSONNEL. The
uppercase DCL commands are generated by RMU Extract.

$ RMU/EXTRACT/ITEM=UNLOAD−
_$ /OPTION=(NOHEADER,FULL,MATCH:WORK_STATUS%) sql$database
$ CREATE WORK_STATUS.COLUMNS
! Columns list for table WORK_STATUS
! in DISK1:[DATABASES]MF_PERSONNEL.RDB
! Created by RMU Extract for Oracle Rdb V7.0−00 on 1−MAR−2001 20:50:25.33
STATUS_CODE
STATUS_NAME
STATUS_TYPE
$ RMU/UNLOAD −
 DISK1:[DATABASES]MF_PERSONNEL.RDB −
 /FIELDS="@WORK_STATUS.COLUMNS" −
 WORK_STATUS −
 WORK_STATUS.UNL
$
$ EXIT

$ RMU/EXTRACT/ITEM=LOAD−
_$ /OPTION=(NOHEADER,FULL,MATCH:WORK_STATUS%) sql$database
$ RMU/LOAD −
 /TRANSACTION_TYPE=EXCLUSIVE −
 /FIELDS="@WORK_STATUS.COLUMNS" −
 DISK1:[DATABASES]MF_PERSONNEL.RDB −
 WORK_STATUS −
 WORK_STATUS.UNL
$
$ EXIT

Example 24

The following example shows how to extract all constraints as an ALTER TABLE statement.

$ rmu/extract/item=(notab,constr) db$:sql_personnel/opt=(nohead,mat=empl%,defer)
set verify;
set language ENGLISH;
set default date format 'SQL92';
set quoting rules 'SQL92';
set date format DATE 001, TIME 001;
attach 'filename MF_PERSONNEL';
alter table EMPLOYEES
 add constraint EMP_SEX_VALUES
 check(EMPLOYEES.SEX in ('M', 'F', '?'))
 deferrable
 add constraint EMP_STATUS_CODE_VALUES
 check(EMPLOYEES.STATUS_CODE in ('0', '1', '2', 'N'))
 deferrable
 alter column EMPLOYEE_ID
 constraint EMPLOYEES_PRIMARY_EMPLOYEE_ID
 primary key
 deferrable;

commit work;

Oracle® Rdb for OpenVMS

Examples 83

Oracle® Rdb for OpenVMS

Examples 84

Chapter 6
Enhancements Provided in Previous Releases

Chapter 6Enhancements Provided in Previous Releases 85

6.1 Enhancements Provided in Oracle Rdb Release
7.0.7.2

6.1.1 Rdb Optional Site−Specific Startup Procedure

The Oracle Rdb startup procedure RMONSTART(xx).COM now supports an optional site−specific startup
procedure to be executed after the Rdb Monitor (RDMMON) process has been started. If the file
SYS$STARTUP:RDB$SYSTARTUP(xx).COM (where xx indicates the version number for multi−version
Rdb kits) is found, it is executed as a DCL command procedure by the RMONSTART(xx).COM procedure.

SYS$STARTUP:RDB$SYSTARTUP(xx).COM is intended to contain site−specific tasks to be executed after
the Rdb monitor procedure has completed. Such tasks might include opening databases or starting layered
products that depend on the Rdb monitor process having been started.

If a site wishes to use this capability, the RDB$SYSTARTUP(xx).COM procedure must be created in
SYS$STARTUP (either in the common SYS$COMMON:[SYS$STARTUP] directory or a node−specific
SYS$SPECIFIC:[SYS$STARTUP] directory). The Rdb installation procedure does not provide or replace
this file.

6.1.2 Oracle Rdb SGA API

Oracle Rdb maintains an extensive set of online performance statistics that provide valuable dynamic
information regarding the status of an active database. The system global area (SGA) application
programming interface (API) described in this document provides a way to retrieve these database
performance statistics.

The SGA API automates retrieving database statistics available only through the RMU Show Statistics
command. The SGA API provides the only way to retrieve statistics for Oracle Rdb databases from an
application. Using the SGA API provides fast access to the data without effecting the execution of the server.

Previously, the Oracle Rdb SGA API was available as a separate software option to be downloaded, installed
and maintained independently of the Oracle Rdb kit. Each time a new version of Oracle Rdb was installed, the
SGA API would have to be updated. If the SGA API was not updated, it would, in many cases, fail to work
correctly.

This problem has been partly resolved. Most of the contents of the SGA API separate software option are now
automatically provided in the RDM$DEMO directory during the Oracle Rdb kit installation procedure. Please
refer to the SGA API documentation available in RDM$DEMO in various formats as SGAAPI.PS,
SGAAPI.HTML and SGAAPI.TXT for additional information.

Existing Users of the SGAAPI May Have to Modify Procedures

Existing users of the Oracle Rdb SGA API should refer to the documentation as there will
be some minor changes required. In particular, the KUSRMUSHRxx.EXE sharable image
is now provided in SYS$LIBRARY and the KUSRMUSHRxx.OPT linker options file has
been updated to reference this sharable image in its new location.

6.1 Enhancements Provided in Oracle Rdb Release 7.0.7.2 86

6.1.3 CHRONO_FLAG Replaces Older CRONO_FLAG
Keyword

The SET FLAGS statement and the RDMS$SET_FLAGS logical now accept the keyword CHRONO_FLAG
as an alternate spelling of the existing keyword CRONO_FLAG. The latter keyword is deprecated and will be
removed from a future release of Rdb V7.1.

The new keyword will also be displayed by the SHOW FLAGS statement.

Oracle® Rdb for OpenVMS

6.1.3 CHRONO_FLAG Replaces Older CRONO_FLAG Keyword 87

6.2 Enhancements Provided in Oracle Rdb Release
7.0.7.1

6.2.1 RDM$BIND_SNAP_QUIET_POINT Logical No Longer
Used

Bug 2656534

If the logical RDM$BIND_SNAP_QUIET_POINT was defined to be "0" on a system that was used for the
standby database in a Hot Standby configuration, it was not possible to start database replication. Attempts to
start replication would fail with:

RDMS−F−HOTSNAPQUIET, quiet points must be enabled
for snapshot transactions during hot standby replication

However, defining the logical to "1" can cause processes with long running READ ONLY transactions to
prevent database backups from proceeding.

This logical was introduced in Oracle Rdb Release 6.0 to allow database administrators to override the 6.0
requirement that READ ONLY transactions hold the quiet−point lock. Defining the logical to "1" (the default)
would provide better performance when the Fast Commit feature was enabled and processes frequently
switched between READ ONLY and READ WRITE transactions. Since that time, improvements have been
made to the quiet−point lock algorithms that make this logical no longer necessary. Since releases 7.0.6.3 and
7.1.0.1, READ ONLY transactions would continue to hold the quiet−point lock until a backup process
requested the lock. When the lock was requested, READ ONLY processes would release the quiet point lock
as soon as the currently executing database request finished, if the RDM$BIND_SNAP_QUIET_POINT
logical was defined as "0". This made it no longer necessary to have the logical defined as "1".

Since the quiet−point lock behavior now behaves optimally, even with the Fast Commit feature enabled, the
RDM$BIND_SNAP_QUIET_POINT logical is no longer needed and thus has been removed. Oracle Rdb will
now behave as if the logical is always defined to be "0".

This problem has been corrected in Oracle Rdb Release 7.0.7.1.

6.2.2 Determining Which Oracle Rdb Options Are Installed

When installing Oracle Rdb Server on OpenVMS you can choose from five components to install:

Oracle Rdb1.
Programmer for Rdb (Rdb Compilers)2.
Hot Standby3.
Power Utilities4.
Common Components5.

Starting with Rdb 7.0, you can determine what Rdb options were selected during the installation of Rdb by
running the program SYS$SYSTEM:RDBINS<RdbVersionVariant>.EXE. For example:

6.2 Enhancements Provided in Oracle Rdb Release 7.0.7.1 88

$ RUN SYS$SYSTEM:RDBINS70
Installed: Oracle Rdb,Rdb Compilers,Hot Standby,Power Utilities

Previously, however, the output of the RDBINS program could not easily be redirected. Attempts to redefine
SYS$OUTPUT would not allow the program output to be captured.

This problem has been resolved. The RDBINS program now allows redirection of the output to
SYS$OUTPUT. The RDBINS program also creates a DCL symbol RDB$INSTALLED_SELECTIONS
containing the same output string as is displayed to SYS$OUTPUT.

6.2.3 New Procedure RDB$IMAGE_VERSIONS.COM

The command procedure RDB$IMAGE_VERSIONS.COM is supplied in SYS$LIBRARY by the Rdb
installation procedure. The RDB$IMAGE_VERSIONS command procedure can be used to display the image
identification string and image link date/time from various Oracle Rdb or potentially related images in
SYS$SYSTEM, SYS$LIBRARY and SYS$MESSAGE. This procedure can be used to determine exactly
what images are installed on the system.

RDB$IMAGE_VERSIONS.COM accepts an optional parameter. If passed, this parameter specifies a specific
file or wildcard to lookup and display information for. By default, filenames starting with RD*, SQL*, RM*,
and COSI* and ending with .EXE are searched for and displayed.

The following example shows how to use the RDB$IMAGE_VERSIONS command procedure.

Decrdb RTA1:> @RDB$IMAGE_VERSIONS
SYS$SYSROOT:[SYSEXE]RDB$NATCONN71.EXE;1 SQL*NET V7.1−55 8−MAY−2002 15:56
SYS$COMMON:[SYSEXE]RDBINS.EXE;4 ORACLE RDB V7.0 14−NOV−2002 17:20
SYS$COMMON:[SYSEXE]RDBINS70.EXE;33 ORACLE RDB V7.0 7−MAR−2003 15:30
SYS$COMMON:[SYSEXE]RDBINS71.EXE;5 ORACLE RDB V7.1 9−APR−2003 10:58
SYS$COMMON:[SYSEXE]RDBPRE.EXE;5 V7.0−65 10−SEP−2002 16:02
SYS$COMMON:[SYSEXE]RDBPRE70.EXE;37 V7.0−7 28−FEB−2003 23:24
SYS$COMMON:[SYSEXE]RDBPRE71.EXE;5 V7.1−101 8−APR−2003 16:49
SYS$COMMON:[SYSEXE]RDBSERVER.EXE;9 RDB/RSV V7.0−65 5−SEP−2002 21:01
SYS$COMMON:[SYSEXE]RDBSERVER70.EXE;41 RDB/RSV V7.0−7 27−FEB−2003 17:29
SYS$COMMON:[SYSEXE]RDBSERVER71.EXE;5 RDB/RSVV7.1−101 7−APR−2003 17:43
SYS$COMMON:[SYSEXE]RDMABS.EXE;5 RDB V7.0−65 10−SEP−2002 16:01
 .
 .
 .

Oracle® Rdb for OpenVMS

6.2.3 New Procedure RDB$IMAGE_VERSIONS.COM 89

Chapter 7
Documentation Corrections
This chapter provides information not currently available in the Oracle Rdb documentation set.

Chapter 7Documentation Corrections 90

7.1 Documentation Corrections

7.1.1 Database Server Process Priority Clarification

By default, the database servers (ABS, ALS, DBR, LCS, LRS, RCS) created by the Rdb monitor inherit their
VMS process scheduling base priority from the Rdb monitor process. The default priority for the Rdb monitor
process is 15.

Individual server priorities can be explicitly controlled via system−wide logical names as described in Table
7−1.

Table 7−1 Server Process Priority Logical Names

Logical Name Use

RDM$BIND_ABS_PRIORITY Base Priority for the ABS Server process

RDM$BIND_ALS_PRIORITY Base Priority for the ALS Server process

RDM$BIND_DBR_PRIORITY Base Priority for the DBR Server process

RDM$BIND_LCS_PRIORITY Base Priority for the LCS Server process

RDM$BIND_LRS_PRIORITY Base Priority for the LRS Server process

RDM$BIND_RCS_PRIORITY Base Priority for the RCS Server process

When the Hot Standby feature is installed, the RDMAIJSERVER account is created specifying an account
priority of 15. The priority of AIJ server processes on your system can be restricted with the system−wide
logical name RDM$BIND_AIJSRV_PRIORITY. If this logical name is defined to a value less than 15, an
AIJ server process will adjust its base priority to the value specified when the AIJ server process starts. Values
from 0 to 31 are allowed for RDM$BIND_AIJSRV_PRIORITY, but the process is not able to raise its priority
above the RDMAIJSERVER account value.

For most applications and systems, Oracle discourages changing the server process priorities.

7.1.2 Waiting for Client Lock Message

The Oracle Rdb7 Guide to Database Performance and Tuning contains a section in Chapter 3 that describes
the Performance Monitor Stall Messages screen. The section contains a list describing the "Waiting for"
messages. The description of the "waiting for client lock" message was missing from the list.

A client lock indicates that an Rdb metadata lock is in use. The term client indicates that Rdb is a client of the
Rdb locking services. The metadata locks are used to guarantee memory copies of the metadata (table, index
and column definitions) are consistent with the on−disk versions.

The "waiting for client lock" message means the database user is requesting an incompatible locking mode.
For example, when trying to drop a table which is in use, the drop operation requests a PROTECTED WRITE
lock on the metadata object (such as a table) which is incompatible with the existing PROTECTED READ
lock currently used by others of the table.

7.1 Documentation Corrections 91

These metadata locks consist of three longwords. The lock is displayed in text format first, followed by its
hexadecimal representation. The text version masks out non−printable characters with a dot (.).

The leftmost value seen in the hexadecimal output contains the id of the object. The id is described below for
tables and views, functions, procedures, and modules.

For tables and views, the id represents the unique value found in the RDB$RELATION_ID column of
the RDB$RELATIONS system relation for the given table.

•

For routines, the id represents the unique value found in the RDB$ROUTINE_ID column of the
RDB$ROUTINES system relation for the given routine.

•

For modules, the id represents the unique value found in the RDB$MODULE_ID column of the
RDB$MODULES system relation for the given module.

•

The next value displayed signifies the object type. The following table describes objects and their
hexadecimal type values.

Table 7−2 Objects and Their Hexadecimal Type Value

Object Hexadecimal Value

Tables or views 00000004

Routines 00000016

Modules 00000015

The last value in the hexadecimal output represents the lock type. The value 55 indicates this is a client lock.

The following example shows a "waiting for client lock" message from a Stall Messages screen:

Process.ID Since...... Stall.reason............................. Lock.ID.
46001105:2 10:40:46.38 − waiting for client '........' 000000190000000400000055

To determine the name of the referenced object given the lock ID, the following queries can be used based on
the object type:

SQL> select RDB$RELATION_NAME from RDB$RELATIONS where RDB$RELATION_ID = 25;
SQL> select RDB$MODULE_NAME from RDB$MODULES where RDB$MODULE_ID = 12;
SQL> select RDB$ROUTINE_NAME from RDB$ROUTINES where RDB$ROUTINE_ID = 7;

Because the full client lock output is long, it may require more space than is allotted for the Stall.reason
column and therefore can be overwritten by the Lock.ID. column output.

For more detailed lock information, perform the following steps:

Press the L option from the horizontal menu to display a menu of lock IDs.•
Select the desired lock ID.•

7.1.3 Clarification of PREPARE Statement Behavior

Bug 2581863

Oracle® Rdb for OpenVMS

7.1.3 Clarification of PREPARE Statement Behavior 92

According to the Oracle Rdb7 SQL Reference Manual, Volume 3 page 7−227, when using a statement−id
parameter for PREPARE "if that parameter is an integer, then you must explicitly initialize that integer to zero
before executing the PREPARE statement".

This description is not correct and should be replaced with this information:

If the statement−id is non−zero and does not match any prepared statement (the id was stale or
contained a random value), then an error is raised:
%SQL−F−BADPREPARE, Cannot use DESCRIBE or EXECUTE on a statement that is not prepared

1.

If the statement−id is non−zero, or the statement name is one that has previously been used and
matches an existing prepared statement, then that statement is automatically released prior to the
prepare of the new statement. Please refer to the RELEASE statement for further details.

2.

If the statement−id is zero or was automatically released, then a new statement−id is allocated and the
statement prepared.

3.

Please note that if you use statement−name instead of a statement−id−parameter then SQL will implicitly
declare an id for use by the application. Therefore, the semantics described apply similarly when using the
statement−name. See the RELEASE statement for details.

7.1.4 SQL EXPORT Does Not Save Some Database
Attributes

Bug 2574640

The SQL EXPORT and IMPORT commands do not support several database attributes.

The following attributes are not saved by EXPORT for this release of Oracle Rdb.

CHECKPOINT TIMED EVERY n SECONDS•
CHECKPOINT { ALL | UPDATED } ROWS TO { BACKING FILE | DATABASE }•
RMU/SET LOGMINER•

This problem has been corrected in Oracle Rdb Release 7.1. The EXPORT protocol has been extended to
support these and other database attributes. If you have databases with these attributes enabled then after the
IMPORT completes, use a SQL script to re−establish the settings for the new database.

7.1.5 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the
Database Parameter

Bug 2203700

When starting a transaction, there are three different values that are used to determine the lock timeout
interval for that transaction. Those values are:

The value specified in the SET TRANSACTION statement1.
The value stored in the database as specified in CREATE or ALTER DATABASE2.
The value of the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL3.

Oracle® Rdb for OpenVMS

7.1.4 SQL EXPORT Does Not Save Some Database Attributes 93

The timeout interval for a transaction is the smaller of the value specified in the SET TRANSACTION
statement and the value specified in CREATE DATABASE. However, if the logical name
RDM$BIND_LOCK_TIMEOUT_INTERVAL is defined, the value of this logical name overrides the value
specified in CREATE DATABASE.

The description of how these three values interact, found in several different parts of the Rdb documentation
set, is incorrect and will be replaced by the description above.

The lock timeout value in the database can be dynamically modified from the Locking Dashboard in
RMU/SHOW STATISTICS. The Per−Process Locking Dashboard can be used to dynamically override the
logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL for one or more processes.

7.1.6 New Request Options for RDO, RDBPRE and
RDB$INTERPRET

This release note was included in the V70A Release Notes but had gotten dropped somewhere along the line.

For this release of Rdb, two new keywords have been added to the handle−options for the
DECLARE_STREAM, the START_STREAM (undeclared format) and FOR loop statements. These changes
have been made to RDBPRE, RDO and RDB$INTERPRET at the request of several RDO customers.

In prior releases, the handle−options could not be specified in interactive RDO or RDB$INTERPRET. This
has changed in Rdb but these allowed options will be limited to MODIFY and PROTECTED keywords. For
RDBPRE, all options listed will be supported. These option names were chosen to be existing keywords to
avoid adding any new keywords to the RDO language.

The altered statements are shown in Example 5−1, Example 5−2 and Example 5−3.

Example 5−1 DECLARE_STREAM Format

Example 5−2 START_STREAM Format

Example 5−3 FOR Format

Oracle® Rdb for OpenVMS

7.1.6 New Request Options for RDO, RDBPRE and RDB$INTERPRET 94

Each of these statements references the syntax for the HANDLE−OPTIONS which has been revised and is
shown below.

The following options are available for HANDLE−OPTIONS:

REQUEST_HANDLE specifies the request handle for this request. This option is only valid for
RDBPRE and RDML applications. It cannot be used with RDB$INTERPRET, nor interactive RDO.

•

TRANSACTION_HANDLE specifies the transaction handle under which this request executes. This
option is only valid for RDBPRE and RDML applications. It cannot be used with
RDB$INTERPRET, nor interactive RDO.

•

MODIFY specifies that the application will modify all (or most) records fetched from the stream or
for loop. This option can be used to improve application performance by avoiding lock promotion
from SHARED READ for the FETCH to PROTECTED WRITE access for the nested MODIFY or
ERASE statement. It can also reduce DEADLOCK occurrence because lock promotions are avoided.
This option is valid for RDBPRE, RDB$INTERPRET, and interactive RDO. This option is not
currently available for RDML.
For example:

 RDO> FOR (MODIFY) E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00164"
 cont> MODIFY E USING E.MIDDLE_INITIAL = "M"
 cont> END_MODIFY
 cont> END_FOR

This FOR loop uses the MODIFY option to indicate that the nested MODIFY is an unconditional
statement and so aggressive locking can be undertaken during the fetch of the record in the FOR loop.

•

PROTECTED specifies that the application may modify records fetched by this stream by a separate
and independent MODIFY statement. Therefore, this stream should be protected from interference
(aka Halloween affect). The optimizer will select a snapshot of the rows and store them in a
temporary relation for processing, rather than traversing indexes at the time of the FETCH statement.
In some cases this may result in poorer performance when the temporary relation is large and
overflows from virtual memory to a temporary disk file, but the record stream will be protected from
interference. The programmer is directed to the documentation for the Oracle Rdb logical names

•

Oracle® Rdb for OpenVMS

7.1.6 New Request Options for RDO, RDBPRE and RDB$INTERPRET 95

RDMS$BIND_WORK_VM and RDMS$BIND_WORK_FILE.
This option is valid for RDBPRE, RDB$INTERPRET, and interactive RDO. This option is not
currently available for RDML.
The following example creates a record stream in a BASIC program using Callable RDO:

 RDMS_STATUS = RDB$INTERPRET ('INVOKE DATABASE PATHNAME "PERSONNEL"')

 RDMS_STATUS = RDB$INTERPRET ('START_STREAM (PROTECTED) EMP USING ' + &
 'E IN EMPLOYEES')

 RDMS_STATUS = RDB$INTERPRET ('FETCH EMP')

 DML_STRING = 'GET ' + &
 '!VAL = E.EMPLOYEE_ID;' + &
 '!VAL = E.LAST_NAME;' + &
 '!VAL = E.FIRST_NAME' + &
 'END_GET'

 RDMS_STATUS = RDB$INTERPRET (DML_STRING, EMP_ID, LAST_NAME, FIRST_NAME)

In this case the FETCH needs to be protected against MODIFY statements which execute in other
parts of the application.

7.1.7 Missing Descriptions of RDB$FLAGS from HELP File

The HELP file for Oracle Rdb Release 7.0 describes the system tables for Oracle Rdb and was missing these
updated descriptions of the RDB$FLAGS column for several tables.

Table 7−3 Changed Columns for RDB$INDICES Table

Column Name Data Type Domain Name Comments

RDB$FLAGS Integer RDB$FLAGS
A bit mask where the bits have the following
meaning when set:

Bit 0: This index is of type HASHED.

Bit 1: This index uses the MAPPING VALUES
clause to compress ainteger value ranges.

Bit 2: If this is a HASHED index then it is of type
ORDERED. If clear this indicates the index is of
type SCATTERED.

Bit 3: Reserved for future use.

Bit 4: This index has run length compression
enabled (ENABLE COMPRESSION).

Bit 5: This index is no longer used
(MAINTENANCE IS DISABLED).

Bit 6 through 10: Reserved for future use.

Bit 11: This index has duplicates compressed
(DUPLICATES ARE COMPRESSED).

Oracle® Rdb for OpenVMS

7.1.7 Missing Descriptions of RDB$FLAGS from HELP File 96

Bit 12: This index is of type SORTED RANKED.

Bits 13 through 31: Reserved for future use.

Table 7−4 Changed Columns for Rdb$RELATIONS Table

Column Name Data Type Domain Name Comments

RDB$FLAGS Integer RDB$FLAGS
A bit mask where the bits have the following meaning
when set:

Bit 0: This relation is a view.

Bit 1: This relation is not compressed.

Bit 2: The SQL clause, WITH CHECK OPTION, is
used in this view definition.

Bit 3: Indicates a special internal system relation.

Bit 4: This view is not an ANSI updatable view.

Bit 5: This is an imported table in the Distributed Option
for Rdb catalog.

Bit 6: This is a passthru table in the Distributed Option
for Rdb catalog.

Bit 7: This is a partitioned view in the Distributed
Option for Rdb catalog.

Bit 8: This table has compression defined by the storage
map. When set Bit 1 in this bit mask is ignored.

Bit 9: This is a temporary table.

Bit 10: When bit 9 is set this is a global temporary table,
when clear it indicates a local temporary table.

Bit 11: When bit 9 is set this indicates that the rows in
the temporary table should be deleted upon COMMIT.

Bit 12: Reserved for future use.

Bit 13: A table (via a computed by column) or view
references a local temporary table.

Bit 14: Reserved for future use.

Bit 15: This is a system table with a special storage map.

Bits 16 through 31: Reserved for future use.

Table 7−5 Changed Columns for RDB$ROUTINES Table

Column
Name

Data
Type

Domain Name Comments

RDB$FLAGS Integer RDB$FLAGS A bit mask where the bits have the following meaning when set:

Bit 0: Routine is a function. (call returns a result.)

Bit 1: Routine is not valid. (Invalidated by a metadata change.)

Bit 2: Function is not deterministic (that is, the routine is variant).
A subsequent invocation of the routine with identical parameters

Oracle® Rdb for OpenVMS

7.1.7 Missing Descriptions of RDB$FLAGS from HELP File 97

may return different results.

Bit 3: Routine can change the transaction state.

Bit 4: Routine is in a secured shareable image.

Bit 5: Reserved for future use.

Bit 6: Routine is not valid. (Invalidated by a metadata change to the
object upon which this routine depends. This dependency is a
language semantics dependency.)

Bit 7: Reserved for future use.

Bit 8: External function returns NULL when called with any NULL
parameter.

Bit 9: Routine has been analyzed (used for trigger dependency
tracking).

Bit 10: Routine inserts rows.

Bit 11: Routine modifies rows.

Bit 12: Routine deletes rows.

Bit 13: Routine selects rows.

Bit 14: Routine calls other routines.

Other bits are reserved for future use.

Table 7−6 Changed Columns for RDB$STORAGE_MAPS Table

Column Name Data Type Domain Name Comments

RDB$FLAGS Integer RDB$FLAGS
A bit mask where the bits have the following meaning
when set:

Bit 0: This table or index is mapped to page format
MIXED areas.

Bit 1: This partition is not compressed.

Bit 2: This is a strictly partitioned storage map, the
partitioning columns become read only for UPDATE.

Bit 3 through 31: Reserved for future use.

7.1.8 A Way to Find the Transaction Type of a Particular
Transaction Within the Trace Database

The table EPC$1_221_TRANSACTION in the formatted Oracle Trace database has a column
LOCK_MODE_START of longword datatype. The values of this column indicate the type of transaction a
particular transaction was.

Value Transaction type
−−−−− −−−−−−−−−−−−−−−−
8 Read only
9 Read write
14 Batch update

Oracle® Rdb for OpenVMS

7.1.8 A Way to Find the Transaction Type of a Particular Transaction Within the Trace Database 98

7.1.9 Clarification of SET FLAGS Option
DATABASE_PARAMETERS

Bug 1668049

The Oracle Rdb7 SQL Reference Manual describes the option DATABASE_PARAMETERS in Table 7−6 in
the SET FLAGS section. However, this keyword generates output only during ATTACH to the database
which happens prior to the SET FLAGS statement executing.

This option is therefore only useful when used with the RDMS$SET_FLAGS logical name which provides
similar functionality.

$ define RDMS$SET_FLAGS "database_parameters"
$ sql$
SQL> Attach 'File db$:scratch';
 ATTACH #1, Database BLUGUM$DKA300:[SMITHI.DATABASES.V70]SCRATCH.RDB;1
~P Database Parameter Buffer (version=2, len=79)
0000 (00000) RDB$K_DPB_VERSION2
0001 (00001) RDB$K_FACILITY_ALL
0002 (00002) RDB$K_DPB2_IMAGE_NAME "NODE::DISK:[DIR]SQL$70.EXE;1"
0040 (00064) RDB$K_FACILITY_ALL
0041 (00065) RDB$K_DPB2_DBKEY_SCOPE (Transaction)
0045 (00069) RDB$K_FACILITY_ALL
0046 (00070) RDB$K_DPB2_REQUEST_SCOPE (Attach)
004A (00074) RDB$K_FACILITY_RDB_VMS
004B (00075) RDB$K_DPB2_CDD_MAINTAINED (No)
 RDMS$BIND_WORK_FILE = "DISK:[DIR]RDMSTTBL$UEOU3LQ0RV2.TMP;" (Visible = 0)
SQL> Exit
 DETACH #1

7.1.10 Additional Information About Detached Processes

Oracle Rdb documentation omits necessary detail on running Oracle Rdb from a detached process.

Applications run from a detached process must ensure that the OpenVMS environment is established correctly
before running Oracle Rdb. Otherwise, Oracle Rdb will not execute.

Attempts to attach to a database and execute an Oracle Rdb query from applications running as detached
processes will result in an error similar to the following:

%RDB−F−SYS_REQUEST, error from system services request
−SORT−E−OPENOUT, error opening {file} as output
−RMS−F−DEV, error in device name or inappropriate device type for
operation

The problem occurs because a detached process does not normally have the logical names SYS$LOGIN or
SYS$SCRATCH defined.

There are two methods that can be used to correct this:

Use the DCL command procedure RUN_PROCEDURE to run the ACCOUNTS application:
RUN_PROCEDURE.COM includes the single line:

1.

Oracle® Rdb for OpenVMS

7.1.9 Clarification of SET FLAGS Option DATABASE_PARAMETERS 99

$ RUN ACCOUNTS_REPORT

Then execute this procedure using this command:

$ RUN/DETACH/AUTHORIZE SYS$SYSTEM:LOGINOUT/INPUT=RUN_PROCEDURE

This solution executes SYS$SYSTEM:LOGINOUT so that the command language interface (DCL) is
activated. This causes the logical names SYS$LOGIN and SYS$SCRATCH to be defined for the
detached process. The /AUTHORIZE qualifier also ensures that the users' process quota limits
(PQLs) are used from the system authorization file rather than relying on the default PQL system
parameters, which are often insufficient to run Oracle Rdb.
If DCL is not desired, and SYS$LOGIN and SYS$SCRATCH are not defined, then prior to executing
any Oracle Rdb statement, you should define the following logical names:

RDMS$BIND_WORK_FILE
Define this logical name to allow you to reduce the overhead of disk I/O operations for
matching operations when used in conjunction with the RDMS$BIND_WORK_VM logical
name. If the virtual memory file is too small, then overflow to disk will occur at the disk and
directory location specified by RDMS$BIND_WORK_FILE.
For more information on RDMS$BIND_WORK_FILE and RDMS$BIND_WORK_VM, see
the Oracle Rdb Guide to Database Performance and Tuning.

♦

SORTWORK0, SORTWORK1, and so on
The OpenVMS sort/merge utility (SORT/MERGE) attempts to create sort work files in
SYS$SCRATCH. If the SORTWORK logical names exist, the utility will not require the
SYS$SCRATCH logical. However, note that not all queries will require sorting, and that
some sorts will be completed in memory and so will not necessarily require disk space.
If you use the logical RDMS$BIND_SORT_WORKFILES, you will need to define further
SORTWORK logical names as described in the Oracle Rdb Guide to Database Performance
and Tuning.

♦

You should also verify that sufficient process quotas are specified on the RUN/DETACH command
line, or defined as system PQL parameters to allow Oracle Rdb to execute.

7.1.11 The Halloween Problem

When a cursor is processing rows selected from a table, it is possible that another separate query can
interfere with the retrieval of the cursor by modifying the index column's key values used by the
cursor.

For instance, if a cursor selects all EMPLOYEES with LAST_NAME >= 'M', it is likely that the
query will use the sorted index on LAST_NAME to retrieve the rows for the cursor. If an update
occurs during the processing of the cursor which changes the LAST_NAME of an employee from
"Mason" to "Rickard", then it is possible that that employee row will be processed twice. First, when
it is fetched with name "Mason", and then later when it is accessed by the new name "Rickard".

The Halloween problem is a well known problem in relational databases. Access strategies which
optimize the I/O requirements, such as Index Retrieval, can be subject to this problem. Interference
from queries by other sessions are avoided by locking and are controlled by the ISOLATION LEVEL
options in SQL, or the CONCURRENCY/CONSISTENCY options in RDO/RDML.

2.

Oracle® Rdb for OpenVMS

7.1.11 The Halloween Problem 100

Oracle Rdb avoids this problem if it knows that the cursors subject table will be updated. For
example, if the SQL syntax UPDATE ... WHERE CURRENT OF is used to perform updates of target
rows, or if the RDO/RDML MODIFY statement uses the context variable for the stream. Then the
optimizer will choose an alternate access strategy if an update can occur which may cause the
Halloween problem. This can be seen in the access strategy in the example below as a "Temporary
relation" being created to hold the result of the cursor query.

When you use interactive or dynamic SQL, the UPDATE ... WHERE CURRENT OF or DELETE ...
WHERE CURRENT OF statements will not be seen until after the cursor is declared and opened. In
these environments, you must use the FOR UPDATE clause to specify that columns selected by the
cursor will be updated during cursor processing. This is an indication to the Rdb optimizer so that it
protects against the Halloween problem in this case. This is shown in the two examples below
Example 7−1 and Example 7−2.

Example 7−1 shows that the EMP_LAST_NAME index is used for retrieval. Any update performed
will possibly be subject to the Halloween problem.

Example 7−1 Interactive Cursor with no Halloween Protection

SQL> set flags 'strategy';
SQL> declare emp cursor for
cont> select * from employees where last_name >= 'M'
cont> order by last_name;
SQL> open emp;
Conjunct Get Retrieval by index of relation EMPLOYEES
 Index name EMP_LAST_NAME [1:0]
SQL> close emp;

Example 7−2 shows that the query specifies that the column LAST_NAME will be updated by some
later query. Now the optimizer protects the EMP_LAST_NAME index used for retrieval by using a
"Temporary Relation" to hold the query result set. Any update performed on LAST_NAME will now
avoid the Halloween problem.

Example 7−2 Interactive Cursor with Halloween Protection

SQL> set flags 'strategy';
SQL> declare emp2 cursor for
cont> select * from employees where last_name >= 'M'
cont> order by last_name
cont> for update of last_name;
SQL> open emp2;
Temporary relation Conjunct Get
Retrieval by index of relation EMPLOYEES
 Index name EMP_LAST_NAME [1:0]
SQL> close emp2;

When you use the SQL precompiler or the SQL module language compiler, it can be determined from
usage that the cursor context will possibly be updated during the processing of the cursor because all
cursor related statements are present within the module. This is also true for the RDML/RDBPRE
precompilers when you use the DECLARE_STREAM and START_STREAM statements and use the
same stream context to perform all MODIFY and ERASE statements.

The point to note here is that the protection takes place during the open of the SQL cursor (or RDO

Oracle® Rdb for OpenVMS

7.1.11 The Halloween Problem 101

stream), not during the subsequent UPDATE or DELETE.

If you execute a separate UPDATE query which modifies rows being fetched from the cursor, then
the actual rows fetched will depend upon the access strategy chosen by the Rdb optimizer. As the
query is separate from the cursors query (i.e. doesn't reference the cursor context) then the optimizer
does not know that the cursor selected rows are potentially updated and so can not perform the normal
protection against the Halloween problem.

7.1.12 RDM$BIND_MAX_DBR_COUNT Documentation
Clarification

Bug 1495227

The Rdb7 Guide to Database Performance and Tuning Manual, Volume 2, Page A−18, incorrectly
describes the use of the RDM$BIND_MAX_DBR_COUNT logical.

Following is an updated description. Note that the difference in actual behavior between what is in the
existing documentation and software is that the logical name only controls the number of database
recovery processes created at once during "node failure" recovery (that is, after a system or monitor
crash or other abnormal shutdown).

When an entire database is abnormally shut down (due, for example, to a system failure), the database
will have to be recovered in a "node failure" recovery mode. This recovery will be performed by
another monitor in the cluster if the database is opened on another node or will be performed the next
time the database is opened.

The RDM$BIND_MAX_DBR_COUNT logical name and the RDB_BIND_MAX_DBR_COUNT
configuration parameter define the maximum number of database recovery (DBR) processes to be
simultaneously invoked by the database monitor during a "node failure" recovery.

This logical name and configuration parameter apply only to databases that do not have global buffers
enabled. Databases that utilize global buffers have only one recovery process started at a time during
a "node failure" recovery.

In a "node failure" recovery situation with the Row Cache feature enabled (regardless of the global
buffer state), the database monitor will start a single database recovery (DBR) process to recover the
Row Cache Server (RCS) process and all user processes from the oldest active checkpoint in the
database.

7.1.13 RMU /UNLOAD /AFTER_JOURNAL NULL Bit
Vector Clarification

Each output record from the RMU /UNLOAD /AFTER_JOURNAL command includes a vector
(array) of bits. There is one bit for each field in the data record. If a null bit value is 1, the
corresponding field is NULL; if a null bit value is 0, the corresponding field is not NULL and
contains an actual data value. The contents of a data field that is NULL are not initialized and are not
predictable.

Oracle® Rdb for OpenVMS

7.1.12 RDM$BIND_MAX_DBR_COUNT Documentation Clarification 102

The null bit vector begins on a byte boundary. The field RDB$LM_NBV_LEN indicates the number
of valid bits (and thus, the number of columns in the table). Any extra bits in the final byte of the
vector after the final null bit are unused and the contents are unpredictable.

The following example C program demonstrates one possible way of reading and parsing a binary
output file (including the null bit vector) from the RMU /UNLOAD /AFTER_JOURNAL command.
This sample program has been tested using Oracle Rdb V7.0.5 and HP C V6.2−009 on OpenVMS
Alpha V7.2−1. It is meant to be used as a template for writing your own program.

/* DATATYPES.C */

#include <stdio.h>
#include <descrip.h>
#include <starlet.h>
#include <string.h>

#pragma member_alignment __save
#pragma nomember_alignment

struct { /* Database key structure */
 unsigned short lno; /* line number */
 unsigned int pno; /* page number */
 unsigned short dbid; /* area number */
 } dbkey;

typedef struct { /* Null bit vector with one bit for each column */
 unsigned n_tinyint :1;
 unsigned n_smallint :1;
 unsigned n_integer :1;
 unsigned n_bigint :1;
 unsigned n_double :1;
 unsigned n_real :1;
 unsigned n_fixstr :1;
 unsigned n_varstr :1;
 } nbv_t;

struct { /* LogMiner output record structure for table DATATYPES */
 char rdb$lm_action;
 char rdb$lm_relation_name [31];
 int rdb$lm_record_type;
 short rdb$lm_data_len;
 short rdb$lm_nbv_len;
 __int64 rdb$lm_dbk;
 __int64 rdb$lm_start_tad;
 __int64 rdb$lm_commit_tad;
 __int64 rdb$lm_tsn;
 short rdb$lm_record_version;
 char f_tinyint;
 short f_smallint;
 int f_integer;
 __int64 f_bigint;
 double f_double;
 float f_real;
 char f_fixstr[10];
 short f_varstr_len; /* length of varchar */
 char f_varstr[10]; /* data of varchar */
 nbv_t nbv;
 } lm;

#pragma member_alignment __restore

Oracle® Rdb for OpenVMS

7.1.12 RDM$BIND_MAX_DBR_COUNT Documentation Clarification 103

main ()
{ char timbuf [24];
 struct dsc$descriptor_s dsc = {
 23, DSCK_DTYPE_T, DSCK_CLASS_S, timbuf};
 FILE *fp = fopen ("datatypes.dat", "r", "ctx=bin");

 memset (&timbuf, 0, sizeof(timbuf));

 while (fread (&lm, sizeof(lm), 1, fp) != 0)
 {
 printf ("Action = %c\n", lm.rdb$lm_action);
 printf ("Table = %.*s\n", sizeof(lm.rdb$lm_relation_name),
 lm.rdb$lm_relation_name);
 printf ("Type = %d\n", lm.rdb$lm_record_type);
 printf ("Data Len = %d\n", lm.rdb$lm_data_len);
 printf ("Null Bits = %d\n", lm.rdb$lm_nbv_len);

 memcpy (&dbkey, &lm.rdb$lm_dbk, sizeof(lm.rdb$lm_dbk));
 printf ("DBKEY = %d:%d:%d\n", dbkey.dbid,
 dbkey.pno,
 dbkey.lno);

 sys$asctim (0, &dsc, &lm.rdb$lm_start_tad, 0);
 printf ("Start TAD = %s\n", timbuf);

 sys$asctim (0, &dsc, &lm.rdb$lm_commit_tad, 0);
 printf ("Commit TAD = %s\n", timbuf);

 printf ("TSN = %Ld\n", lm.rdb$lm_tsn);
 printf ("Version = %d\n", lm.rdb$lm_record_version);

 if (lm.nbv.n_tinyint == 0)
 printf ("f_tinyint = %d\n", lm.f_tinyint);
 else printf ("f_tinyint = NULL\n");

 if (lm.nbv.n_smallint == 0)
 printf ("f_smallint = %d\n", lm.f_smallint);
 else printf ("f_smallint = NULL\n");

 if (lm.nbv.n_integer == 0)
 printf ("f_integer = %d\n", lm.f_integer);
 else printf ("f_integer = NULL\n");

 if (lm.nbv.n_bigint == 0)
 printf ("f_bigint = %Ld\n", lm.f_bigint);
 else printf ("f_bigint = NULL\n");

 if (lm.nbv.n_double == 0)
 printf ("f_double = %f\n", lm.f_double);
 else printf ("f_double = NULL\n");

 if (lm.nbv.n_real == 0)
 printf ("f_real = %f\n", lm.f_real);
 else printf ("f_real = NULL\n");

 if (lm.nbv.n_fixstr == 0)
 printf ("f_fixstr = %.*s\n", sizeof (lm.f_fixstr),
 lm.f_fixstr);
 else printf ("f_fixstr = NULL\n");

Oracle® Rdb for OpenVMS

7.1.12 RDM$BIND_MAX_DBR_COUNT Documentation Clarification 104

 if (lm.nbv.n_varstr == 0)
 printf ("f_varstr = %.*s\n", lm.f_varstr_len, lm.f_varstr);
 else printf ("f_varstr = NULL\n");

 printf ("\n");
 }
}

Example sequence of commands to create a table, unload the data and display the contents with this
program:

SQL> ATTACH 'FILE MF_PERSONNEL';
SQL> CREATE TABLE DATATYPES (
 F_TINYINT TINYINT
 ,F_SMALLINT SMALLINT
 ,F_INTEGER INTEGER
 ,F_BIGINT BIGINT
 ,F_DOUBLE DOUBLE PRECISION
 ,F_REAL REAL
 ,F_FIXSTR CHAR (10)
 ,F_VARSTR VARCHAR (10));
SQL> COMMIT;
SQL> INSERT INTO DATATYPES VALUES (1, NULL, 2, NULL, 3, NULL, 'THIS', NULL);
SQL> INSERT INTO DATATYPES VALUES (NULL, 4, NULL, 5, NULL, 6, NULL, 'THAT');
SQL> COMMIT;
SQL> EXIT;
$ RMU /BACKUP /AFTER_JOURNAL MF_PERSONNEL AIJBCK.AIJ
$ RMU /UNLOAD /AFTER_JOURNAL MF_PERSONNEL AIJBCK.AIJ −
 /TABLE = (NAME=DATATYPES, OUTPUT=DATATYPES.DAT)
$ CC DATATYPES.C
$ LINK DATATYPES.OBJ
$ RUN DATATYPES.EXE

7.1.14 Location of Host Source File Generated by the
SQL Precompilers

Bug 478898

When the SQL precompiler generates host source files (like .c, .pas, .for) from the precompiler source
files, it locates these files based on the /obj qualifier located on the command line given to the SQL
precompiler.

The following examples show the location where the host source file is generated. When /obj is not
specified on the command line, the object and the host source file take the name of the SQL
precompiler source files with the extensions of .obj and .c respectively.

LUND> sqlpre/cc scc_try_mli_successful.sc
LUND> dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.C;1 SCC_TRY_MLI_SUCCESSFUL.OBJ;2
SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 3 files.

Oracle® Rdb for OpenVMS

7.1.14 Location of Host Source File Generated by the SQL Precompilers 105

When /obj is specified on the command line, the object and the host source take the name given on the
qualifier switch. It uses the default of the SQL precompiler source if a filespec is not specified. It uses
the defaults of .obj and .c if the extension is not specified. If the host language is other than C, then it
uses the appropriate host source extension (like .pas, .for, etc). The files also default to the current
directory if a directory specification is not specified.

LUND> sqlpre/cc/obj=myobj scc_try_mli_successful.sc
LUND> dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 1 file.
LUND> dir myobj.*

Directory MYDISK:[LUND]

MYOBJ.C;1 MYOBJ.OBJ;2

Total of 2 files.

LUND> sqlpre/cc/obj=MYDISK:[lund.tmp] scc_try_mli_successful.sc
LUND> dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 1 file.
LUND> dir MYDISK:[lund.tmp]scc_try_mli_successful.*

Directory MYDISK:[LUND.TMP]

SCC_TRY_MLI_SUCCESSFUL.C;1 SCC_TRY_MLI_SUCCESSFUL.OBJ;2

Total of 2 files.

This problem has been corrected in Oracle Rdb Release 7.0.6.

7.1.15 Suggestion to Increase GH_RSRVPGCNT
Removed

The Oracle Rdb7 for OpenVMS Installation and Configuration Guide contains a section titled
"Installing Oracle Rdb Images as Resident on OpenVMS Alpha" that includes information about
increasing the value of the OpenVMS system parameter GH_RSRVPGCNT when you modify the
RMONSTART.COM or SQL$STARTUP.COM procedures to install Rdb images with the
/RESIDENT qualifier.

Note that modifying the parameter GH_RSRVPGCNT is only ever required if the
RMONSTART.COM or SQL$STARTUP.COM procedures have been manually modified to install
Rdb images with the /RESIDENT qualifier. Furthermore, if the RMONSTART.COM and
SQL$STARTUP.COM procedures are executed during the system startup procedure (directly from
SYSTARTUP_VMS.COM, for example), then there is no need to modify the GH_RSRVPGCNT

Oracle® Rdb for OpenVMS

7.1.15 Suggestion to Increase GH_RSRVPGCNT Removed 106

parameter.

Oracle and HP suggest that you do not modify the value of the GH_RSRVPGCNT system parameter
unless it is absolutely required. Some versions of OpenVMS on some hardware platforms require that
GH_RSRVPGCNT be zero in order to ensure the highest level of system performance.

7.1.16 Clarification of the DDLDONOTMIX Error
Message

Bug 454080

The ALTER DATABASE statement performs two classes of functions: changing the database root
structures in the .RDB file and modifying the system metadata in the RDB$SYSTEM storage area.
The first class of changes do not require a transaction to be active. However, the second class requires
that a transaction be active. Oracle Rdb does not currently support the mixing of these two classes of
ALTER DATABASE clauses.

When you mix clauses that fall into both classes, the error message DDLDONOTMIX "the
{SQL−syntax} clause can not be used with some ALTER DATABASE clauses" is displayed, and the
ALTER DATABASE statement fails.

SQL> alter database filename MF_PERSONNEL
cont> dictionary is not used
cont> add storage area JOB_EXTRA filename JOB_EXTRA;
%RDB−F−BAD_DPB_CONTENT, invalid database parameters in the database parameter
block (DPB)
−RDMS−E−DDLDONOTMIX, the "DICTIONARY IS NOT USED" clause can not be used with
some ALTER DATABASE clauses

The following clauses may be mixed with each other but may not appear with other clauses such as
ADD STORAGE AREA, or ADD CACHE.

DICTIONARY IS [NOT] REQUIRED♦
DICTIONARY IS NOT USED♦
MULTISCHEMA IS { ON | OFF }♦
CARDINALITY COLLECTION IS { ENABLED | DISABLED }♦
METADATA CHANGES ARE { ENABLED | DISABLED }♦
WORKLOAD COLLECTION IS { ENABLED | DISABLED }♦

If the DDLDONOTMIX error is displayed, then restructure the ALTER DATABASE into two
statements, one for each class of actions.

SQL> alter database filename MF_PERSONNEL
cont> dictionary is not used;
SQL> alter database filename MF_PERSONNEL
cont> add storage area JOB_EXTRA filename JOB_EXTRA;

7.1.17 Compressed Sorted Index Entry Stored in
Incorrect Storage Area

Oracle® Rdb for OpenVMS

7.1.16 Clarification of the DDLDONOTMIX Error Message 107

This note was originally included in the Oracle Rdb Release 7.0.1.3 and 7.0.2 Release Notes. The
logical name documented in the note for those releases was documented incorrectly. Below is a
corrected note.

In specific cases, in versions V6.1 and V7.0 of Oracle Rdb, when a partitioned, compressed sorted
index was created after the data was inserted into the table, b−tree entries may have been inserted into
the wrong storage area.

All of the following criteria must be met in order for the possibility of this problem to occur:

CREATE INDEX is issued after there are records already in the table on which the index is
being created

♦

index must be partitioned over a single column♦
index must have compression enabled♦
scale factor must be zero on the columns of the index♦
no collating sequences specified on the columns of the index♦
no descending indexes♦
MAPPING VALUES must not be specified♦

RMU/DUMP/AREA=xx will show that the b−tree entry was not stored in the expected storage area.
However, in versions V6.1 and V7.0 of Oracle Rdb, the rows of the table can still be successfully
retrieved.

The following example shows the problem:

create database
 filename foo
 create storage area Area_1
 filename Area_1
 create storage area Area_2
 filename Area2;

create table T1
 (C1 integer);

! insert data into table prior to index creation
insert into T1 values (0);
commit;

! create index with COMPRESSION ENABLED
create index Index_1
 on T1 (C1)
 enable compression
 store using (C1)
 in Area_1 with limit of (0)
 otherwise in Area_2;
COMMIT;
!
! Dump out the page for b−tree in AREA_1, there are 0 bytes stored.
! There should be 5 bytes stored for the b−tree entry.
!
RMU/DUMP/AREA=AREA_1
.
.
. total B−tree node size: 430
 0030 2003 0240 line 0 (2:5:0) index: set 48
 002F FFFFFFFF FFFF 0244 owner 47:−1:−1
 0000 024C 0 bytes of entries <−−−***** no entry

Oracle® Rdb for OpenVMS

7.1.16 Clarification of the DDLDONOTMIX Error Message 108

 8200 024E level 1, full suffix
00000000000000000000000000000000 0250 unused '................'
.
.
.
!
! Dump out the page for b−tree in AREA_2, there are 5 bytes stored
!
RMU/DUMP/AREA=AREA_2
.
.
. total B−tree node size: 430
 0031 2003 0240 line 0 (3:5:0) index: set 49
 002F FFFFFFFF FFFF 0244 owner 47:−1:−1
 000A 024C 10 bytes of entries
 8200 024E level 1, full suffix
 00 05 0250 5 bytes stored, 0 byte prefix <−−−entry
 0100008000 0252 key '.....'
 22B1 10 0257 pointer 47:554:0
.
.
.

This problem occurs when index compression is enabled. Therefore, a workaround is to create the
index with compression disabled (which is the default). Once this update kit is applied, it is
recommended that the index be dropped and recreated with compression enabled to rebuild the
b−tree.

Note

In prior versions, the rows were successfully retrieved even though the key values
were stored in the wrong storage area. This was due to the range query algorithm
skipping empty partitions or scanning extra areas.

However, due to an enhancement in the algorithm for range queries on partitioned
SORTED indexes in Oracle Rdb Release 7.0.2, the rows of the table which are
stored in the incorrect storage areas may not be retrieved when using the
partitioned index.

The optimized algorithm now only scans the relevant index areas (and no longer
skips over empty areas) resulting in only those rows being returned. Therefore, it is
recommended that the index be dropped and re−created. For a short term solution,
another alternative is to disable the new optimization by defining the logical
RDMS$INDEX_PART_CHECK to 0.

This problem has been corrected in Oracle Rdb Release 7.0.1.3.

7.1.18 Partition Clause is Optional on CREATE
STORAGE MAP

Bug 642158

In the Oracle Rdb7 SQL Reference Manual, the syntax diagram for the CREATE STORAGE MAP

Oracle® Rdb for OpenVMS

7.1.18 Partition Clause is Optional on CREATE STORAGE MAP 109

statement incorrectly shows the partition clause as required syntax. The partition clause is not a
required clause.

This correction will appear in the next publication of the Oracle Rdb SQL Reference Manual.

7.1.19 Oracle Rdb Logical Names

The Oracle Rdb7 Guide to Database Performance and Tuning contains a table in Chapter 2
summarizing the Oracle Rdb logical names and configuration parameters. The information in the
following table supersedes the entries for the RDM$BIND_RUJ_ALLOC_BLKCNT and
RDM$BIND_RUJ_EXTEND_BLKCNT logical names.

Logical Name
Configuration Parameter

Function

RDM$BIND_RUJ_ALLOC_BLKCNT
Allows you to override the default value of the .ruj file.
The block count value can be defined between 0 and 2
billion with a default of 127.

RDM$BIND_RUJ_EXTEND_BLKCNT
Allows you to pre−extend the .ruj files for each process
using a database. The block count value can be defined
between 0 and 65535 with a default of 127.

7.1.20 Documentation Error in Oracle Rdb Guide to
Database Performance and Tuning

The Oracle Rdb7 Guide to Database Performance and Tuning, Volume 2 contains an error in section
C.7, "Displaying Sort Statistics with the R Flag".

When describing the output from this debugging flag, bullet 9 states:

Work File Alloc indicates how many work files were used in the sort operation. A zero (0)
value indicates that the sort was accomplished completely in memory.

♦

This is incorrect. This statistic should be described as shown:

Work File Alloc indicates how much space (in blocks) was allocated in the work files for this
sort operation. A zero (0) value indicates that the sort was accomplished completely in
memory.

♦

This error will be corrected in a future release of Oracle Rdb Guide to Database Performance and
Tuning.

7.1.21 SET FLAGS Option IGNORE_OUTLINE Not
Available

Bug 510968

The Oracle Rdb7 SQL Reference Manual described the option IGNORE_OUTLINE in Table 7−6 of
the SET FLAGS section. However, this keyword was not implemented in Oracle Rdb Release 7.0.

Oracle® Rdb for OpenVMS

7.1.19 Oracle Rdb Logical Names 110

This has been corrected in this release of Oracle Rdb. This keyword is now recognized by the SET
FLAGS statement. As a workaround the logical name RDMS$BIND_OUTLINE_FLAGS "I" can be
used to set this attribute.

7.1.22 SET FLAGS Option INTERNALS Not Described

The Oracle Rdb7 SQL Reference Manual does not describe the option INTERNALS in Table 7−6 in
the SET FLAGS section. This keyword was available in first release of Oracle Rdb 7.0 and is used to
enable debug flags output for internal queries such as constraints and triggers. It can be used in
conjunction with other options such as STRATEGY, BLR, and EXECUTION. For example, the
following flag settings are equivalent to defining the RDMS$DEBUG_FLAGS as ISn and shows the
strategy used by the trigger's actions on the AFTER DELETE trigger on the EMPLOYEES table.

SQL> SET FLAGS 'STRATEGY, INTERNAL, REQUEST_NAME';
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:
 INTERNALS,STRATEGY,PREFIX,REQUEST_NAMES
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID = '00164';
~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation DEGREES
 Index name DEG_EMP_ID [1:1]
~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation JOB_HISTORY
 Index name JOB_HISTORY_HASH [1:1]
~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation SALARY_HISTORY
 Index name SH_EMPLOYEE_ID [1:1]
~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Conjunct Get Retrieval by index of relation DEPARTMENTS
 Index name DEPARTMENTS_INDEX [0:0]
Temporary relation Get Retrieval by index of relation EMPLOYEES
 Index name EMPLOYEES_HASH [1:1] Direct lookup
1 row deleted

7.1.23 Documentation for VALIDATE_ROUTINE
Keyword for SET FLAGS

The SET FLAGS section of the Oracle Rdb7 SQL Reference Manual omitted the description of the
VALIDATE_ROUTINE keyword (which can be negated as NOVALIDATE_ROUTINE). This
keyword enables the re−validation of an invalidated stored procedure or function. This flag has the
same action as the logical RDMS$VALIDATE_ROUTINE described in the Oracle Rdb7 Guide to
Database Performance and Tuning.

This example shows the re−validation of a stored procedure. When the stored routine is successfully
prepared (but not executed), the setting of VALIDATE_ROUTINE causes the entry for this routine in
the RDB$ROUTINES system table to be set as valid.

SQL> SET TRANSACTION READ WRITE;
SQL> SET FLAGS 'VALIDATE_ROUTINE';
SQL> SET NOEXECUTE;
SQL> CALL ADD_EMPLOYEE ('Smith');

Oracle® Rdb for OpenVMS

7.1.22 SET FLAGS Option INTERNALS Not Described 111

SQL> SET EXECUTE;
SQL> COMMIT;

In this example, the use of the SET NOEXECUTE statement in interactive SQL allows the stored
routine to be successfully compiled, but it is not executed.

7.1.24 Documentation for Defining the RDBSERVER
Logical Name

Bugs 460611 and 563649.

Sections 4.3.7.1 and 4.3.7.2 in the Oracle Rdb7 for OpenVMS Installation and Configuration Guide
provide the following examples for defining the RDBSERVER logical name:

 $ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER70.EXE
 and
 $ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER61.EXE

These definitions are inconsistent with other command procedures that attempt to reference the
RDBSERVERxx.EXE image. The following is one example where the RDBSERVER.COM
procedure references SYS$COMMON:<SYSEXE> and SYS$COMMON:[SYSEXE], rather than
SYS$SYSTEM:

$ if .not. −
 ((f$locate ("SYS$COMMON:<SYSEXE>",rdbserver_image) .ne. log_len) .or. −
 (f$locate ("SYS$COMMON:[SYSEXE]",rdbserver_image) .ne. log_len))
$ then
$ say "''rdbserver_image' is not found in SYS$COMMON:<SYSEXE>"
$ say "RDBSERVER logical is ''rdbserver_image'"
$ exit
$ endif

In this case, if the logical name were defined as instructed in the Oracle Rdb7 for OpenVMS
Installation and Configuration Guide, the image would not be found.

The Oracle Rdb7 for OpenVMS Installation and Configuration Guide should define the logical name
as follows:

 DEFINE RDBSERVER SYS$COMMON:<SYSEXE>RDBSERVER70.EXE
 and
 DEFINE RDBSERVER SYS$COMMON:<SYSEXE>RDBSERVER61.EXE

7.1.25 Undocumented SET Commands and Language
Options

The following SET statements were omitted from the Oracle Rdb7 documentation.

Oracle® Rdb for OpenVMS

7.1.24 Documentation for Defining the RDBSERVER Logical Name 112

7.1.25.1 QUIET COMMIT Option

The SET QUIET COMMIT statement (for interactive and dynamic SQL), the module header option
QUIET COMMIT, the /QUIET_COMMIT (and /NOQUIET_COMMIT) qualifier for SQL module
language, or the /SQLOPTIONS=QUIET_COMMIT (and NOQUIET_COMMIT) option for the SQL
language precompiler allows the programmer to control the behavior of the COMMIT and
ROLLBACK statements in cases where there is no active transaction.

By default, if there is no active transaction, SQL will raise an error when COMMIT or ROLLBACK
is executed. This default is retained for backward compatibility for applications that may wish to
detect the situation. If QUIET COMMIT is set to ON, then a COMMIT or ROLLBACK executes
successfully when there is no active transaction.

Note

Within a compound statement, the COMMIT and ROLLBACK statements in this
case are ignored.

Examples

In interactive or dynamic SQL, the following SET command can be used to disable or enable error
reporting for COMMIT and ROLLBACK when no transaction is active. The parameter to the SET
command is a string literal or host variable containing the keyword ON or OFF. The keywords may
be in any case (upper, lower, or mixed).

SQL> COMMIT;
%SQL−F−NO_TXNOUT, No transaction outstanding
SQL> ROLLBACK;
%SQL−F−NO_TXNOUT, No transaction outstanding
SQL> SET QUIET COMMIT 'on';
SQL> ROLLBACK;
SQL> COMMIT;
SQL> SET QUIET COMMIT 'off';
SQL> COMMIT;
%SQL−F−NO_TXNOUT, No transaction outstanding

In the SQL module language or precompiler header, the clause QUIET COMMIT can be used to
disable or enable error reporting for COMMIT and ROLLBACK when no transaction is active. The
keyword ON or OFF must be used to enable or disable this feature. The following example enables
QUIET COMMIT so that no error is reported if a COMMIT is executed when no transaction is active.
For example:

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
QUIET COMMIT ON

PROCEDURE S_TXN (SQLCODE);
SET TRANSACTION READ WRITE;

PROCEDURE C_TXN (SQLCODE);
COMMIT;

Oracle® Rdb for OpenVMS

7.1.25.1 QUIET COMMIT Option 113

7.1.25.2 COMPOUND TRANSACTIONS Option

The SET COMPOUND TRANSACTIONS statement (for interactive and dynamic SQL) and the
module header option COMPOUND TRANSACTIONS allows the programmer to control the SQL
behavior for starting default transactions for compound statements.

By default, if there is no current transaction, SQL will start a transaction before executing a
compound statement or stored procedure. However, this may conflict with the actions within the
procedure, or may start a transaction for no reason if the procedure body does not perform any
database access. This default is retained for backward compatibility for applications that may expect a
transaction to be started for the procedure.

If COMPOUND TRANSACTIONS is set to EXTERNAL, then SQL starts a transaction before
executing the procedure; otherwise, if it is set to INTERNAL, it allows the procedure to start a
transaction as required by the procedure execution.

Examples

In interactive or dynamic SQL, the following SET command can be used to disable or enable
transactions started by the SQL interface. The parameter to the SET command is a string literal or
host variable containing the keyword INTERNAL or EXTERNAL. The keywords may be in any case
(upper, lower, or mixed). For example:

SQL> SET COMPOUND TRANSACTIONS 'internal';
SQL> CALL START_TXN_AND_COMMIT ();
SQL> SET COMPOUND TRANSACTIONS 'external';
SQL> CALL UPDATE_EMPLOYEES (...);

In the SQL module language or precompiler header, the clause COMPOUND TRANSACTIONS can
be used to disable or enable starting a transaction for procedures. The keyword INTERNAL or
EXTERNAL must be used to enable or disable this feature.

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
COMPOUND TRANSACTIONS INTERNAL

PROCEDURE S_TXN (SQLCODE);
BEGIN
SET TRANSACTION READ WRITE;
END;

PROCEDURE C_TXN (SQLCODE);
BEGIN
COMMIT;
END;

7.1.26 Undocumented Size Limit for Indexes with Keys
Using Collating Sequences

Bug 586079

Oracle® Rdb for OpenVMS

7.1.25.2 COMPOUND TRANSACTIONS Option 114

When a column is defined with a collating sequence, the index key is specially encoded to incorporate
the correct ordering (collating) information. This special encoding takes more space than keys
encoded for ASCII (the default when no collating sequence is used). Therefore, the encoded string
uses more than the customary one byte per character of space within the index. This is true for all
versions of Oracle Rdb that support collating sequences.

For all collating sequences, except Norwegian, the space required is approximately 9 bytes for every 8
characters. So, a CHAR (24) column will require approximately 27 bytes. For Norwegian collating
sequences, the space required is approximately 10 bytes for every 8 characters.

The space required for encoding the string must be taken into account when calculating the size of an
index key against the limit of 255 bytes. Suppose a column defined with a collating sequence of
GERMAN was used in an index. The length of that column is limited to a maximum of 225 characters
because the key will be encoded in 254 bytes.

The following example demonstrates how a 233 character column, defined with a German collating
sequence and included in an index, exceeds the index size limit of 255 bytes, even though the column
is defined as less than 255 characters in length:

SQL> CREATE DATABASE
cont> FILENAME 'TESTDB.RDB'
cont> COLLATING SEQUENCE GERMAN GERMAN;
SQL> CREATE TABLE EMPLOYEE_INFO (
cont> EMP_NAME CHAR (233));
SQL> CREATE INDEX EMP_NAME_IDX
cont> ON EMPLOYEE_INFO (
cont> EMP_NAME ASC)
cont> TYPE IS SORTED;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−INDTOOBIG, requested index is too big

7.1.27 Changes to RMU/REPLICATE AFTER/BUFFERS
Command

The behavior of the RMU/REPLICATE AFTER/BUFFERS command has been changed. The
/BUFFERS qualifier may be used with either the CONFIGURE option or the START option.

When using local buffers, the AIJ log roll−forward server (LRS) will use a minimum of 4096 buffers.
The value provided to the /BUFFERS qualifier will be accepted, but it will be ignored if it is less than
4096. In addition, further parameters will be checked and the number of buffers may be increased if
the resulting calculations are greater than the number of buffers specified by the /BUFFERS qualifier.
If the database is configured to use more than 4096 AIJ request blocks (ARBs), then the number of
buffers may be increased to the number of ARBs configured for the database. The LRS ensures that
there are at least 10 buffers for every possible storage area in the database. Thus, if the total number
of storage areas (both used and reserved) multiplied by 10 results in a greater number of buffers, that
number will be used.

When global buffers are used, the number of buffers used by the AIJ log roll−forward server is
determined as follows:

Oracle® Rdb for OpenVMS

7.1.27 Changes to RMU/REPLICATE AFTER/BUFFERS Command 115

If the /BUFFERS qualifier is omitted and the /ONLINE qualifier is specified, the number of
buffers will default to the previously configured value, if any, or 256, whichever is larger.

♦

If the /BUFFERS qualifier is omitted and the /ONLINE qualifier is not specified or the
/NOONLINE is specified, the number of buffers will default to the maximum number of
global buffers allowed per user ("USER LIMIT"), or 256, whichever is larger.

♦

If the /BUFFERS qualifier is specified, that value must be at least 256, and it may not be
greater than the maximum number of global buffers allowed per user ("USER LIMIT").

♦

The /BUFFER qualifier now enforces a minimum of 256 buffers for the AIJ log roll−forward server.
The maximum number of buffers allowed is still 524288 buffers.

7.1.28 Change in the Way RDMAIJ Server is Set Up in
UCX

Starting with Oracle Rdb V7.0.2.1, the RDMAIJ image has become a varianted image. Therefore, the
information in section 2.12, "Step 10: Specify the Network Transport Protocol," of the Oracle Rdb7
and Oracle CODASYL DBMS Guide to Hot Standby Databases has become outdated in regards to
setting up the RDMAIJSERVER object when using UCX as the network transport protocol. The UCX
SET SERVICE command should now look similar to the following:

 $ UCX SET SERVICE RDMAIJ −
 /PORT=<port_number> −
 /USER_NAME=RDMAIJ −
 /PROCESS_NAME=RDMAIJ −
 /FILE=SYS$SYSTEM:RDMAIJSERVER.com −
 /LIMIT=<limit>

And for Oracle Rdb multiversion, it should look similar to the following:

 $ UCX SET SERVICE RDMAIJ70 −
 /PORT=<port_number> −
 /USER_NAME=RDMAIJ70 −
 /PROCESS_NAME=RDMAIJ70 −
 /FILE=SYS$SYSTEM:RDMAIJSERVER70.com −
 /LIMIT=<limit>

The installation procedure for Oracle Rdb creates a user named RDMAIJ(nn) and places a file called
RDMAIJSERVER(nn).com in SYS$SYSTEM and the RMONSTART(nn).COM command procedure
will try to enable a service called RDMAIJ(nn) if UCX is installed and running.

Changing the RDMAIJ server to a multivarianted image does not impact installations using DECNet
since the correct DECNet object is created during the Rdb installation.

7.1.29 CREATE INDEX Supported for Hot Standby

On page 1−13 of the Guide to Hot Standby Databases, the add new index operation is incorrectly
listed as an offline operation not supported by Hot Standby. The CREATE INDEX operation is now
fully supported by Hot Standby, as long as the transaction does not span all available AIJ journals,
including emergency AIJ journals.

Oracle® Rdb for OpenVMS

7.1.28 Change in the Way RDMAIJ Server is Set Up in UCX 116

7.1.30 Dynamic OR Optimization Formats

Bug 711643

In Table C−2 on Page C−7 of the Oracle Rdb7 Guide to Database Performance and Tuning, the
dynamic OR optimization format is incorrectly documented as [l:h...]n. The correct formats for Oracle
Rdb Release 7.0 and later are [(l:h)n] and [l:h,l2:h2].

Oracle® Rdb for OpenVMS

7.1.30 Dynamic OR Optimization Formats 117

Chapter 8
Known Problems and Restrictions
This chapter describes problems, restrictions, and workarounds known to exist in Oracle Rdb Release
7.0.8.2.

Chapter 8Known Problems and Restrictions 118

8.1 Oracle Rdb Considerations

8.1.1 Some SQL92 Dialect−required Warnings Not
Delivered

Bugs 3651847 and 4532451

The required warnings (information codes) for such things as rows eliminated for nulls
(%RDB−I−ELIM_NULL) and string truncation (%RDB−I−TRUN_RTRV) are not being returned for
singleton SELECT and singleton UPDATE statements (for example, statements that return a single
row using the INTO clause). To demonstrate with a PERSONNEL database use the following
interactive SQL commands:

SQL> set dialect 'sql92';
SQL> attach 'filename sql$database';
SQL>
SQL> ! Force a row to contain NULL for SALARY_AMOUNT
SQL> update salary_history
cont> set salary_amount = NULL
cont> where employee_id = '00471'
cont> and salary_end = date vms'20−Aug−1981';
1 row updated
SQL>
SQL> declare :avg_sal integer(2);
SQL>
SQL> ! No informational generated (but is expected)
SQL> select avg(salary_amount) into :avg_sal
cont> from salary_history where employee_id = '00471'
cont> and salary_end >= date vms'1−AUG−1970';
SQL> show sqlca
SQLCA:
 SQLCAID: SQLCA SQLCABC: 128
 SQLCODE: 0
 SQLERRD: [0]: 0
 [1]: 0
 [2]: 1
 [3]: 0
 [4]: 0
 [5]: 0
 SQLWARN0: 0 SQLWARN1: 0 SQLWARN2: 0
 SQLWARN3: 0 SQLWARN4: 0 SQLWARN5: 0
 SQLWARN6: 0 SQLWARN7: 0
 SQLSTATE: 00000
SQL> print :avg_sal;
 AVG_SAL
 60893.86
SQL>
SQL> ! Non singleton query returns correct informational
SQL> select avg(salary_amount)
cont> from salary_history where employee_id = '00471'
cont> and salary_end >= date vms'1−AUG−1970';

 6.089385714285714E+004
1 row selected
%RDB−I−ELIM_NULL, null value eliminated in set function
SQL> show sqlca

8.1 Oracle Rdb Considerations 119

SQLCA:
 SQLCAID: SQLCA SQLCABC: 128
 SQLCODE: 1003
 SQLERRD: [0]: 0
 [1]: 0
 [2]: 1
 [3]: 0
 [4]: 0
 [5]: 0
 SQLWARN0: 0 SQLWARN1: 0 SQLWARN2: 0
 SQLWARN3: 0 SQLWARN4: 0 SQLWARN5: 0
 SQLWARN6: 0 SQLWARN7: 0
 SQLSTATE: 01003
%RDB−I−ELIM_NULL, null value eliminated in set function
SQL>
SQL> rollback;

Since there is a row in the SALARY_HISTORY table with a NULL in SALARY_AMOUNT, the set
function AVG should report an informational message (and return a special warning level
SQLSTATE/SQLCODE value).

%RDB−I−ELIM_NULL, null value eliminated in set function

8.1.2 Partitioned Index with Descending Column and
Collating Sequence

Bug 2797443

A known problem exists in which a query can return wrong results (number of rows returned is
incorrect). This can happen on a table that has a multi−column, partitioned index in which one of the
columns is sorted in descending order and the column has an associated collating sequence.

The following example can be used to demonstrate the problem.

$ sql$

create database file mf_collating.rdb alloc 10
 collating sequence french french
 create storage area area1 alloc 10
 create storage area area2 alloc 10
 create storage area area3 alloc 10;

create table tab1 (id tinyint, r3 char (3));

insert into tab1 (id, r3) values (1, 'a');
1 row inserted
insert into tab1 (id, r3) values (1, 'b');
1 row inserted
insert into tab1 (id, r3) values (1, 'f');
1 row inserted

create index y3 on tab1 (id asc, r3 desc)
 store using (id, r3)
 in area1 with limit of (1, 'k')
 in area2 with limit of (1, 'e')
 otherwise in area3 ;

Oracle® Rdb for OpenVMS

8.1.2 Partitioned Index with Descending Column and Collating Sequence 120

commit;

set flags 'strategy';

! Here is a query that returns the correct rows using sequential rather
! than indexed access.

select id, r3 from tab1 where id = 1 and r3 <= 'e'
 optimize for sequential access;
Conjunct Get Retrieval sequentially of relation TAB1
 ID R3
 1 a
 1 b
2 rows selected

! Here is the same query without the sequential access restriction.
! Note in the query strategy that index Y3 is used for data retrieval.
! This query ought to (but does not) return the same set of rows as
! for the sequential access query.

select id, r3 from tab1 where id = 1 and r3 <= 'e';
Leaf#01 FFirst TAB1 Card=3
 BgrNdx1 Y3 [2:1] Fan=16
0 rows selected

8.1.3 RDMS−E−RTNSBC_INITERR, Cannot Init External
Routine Server Site Executor

Execution of an external function (or procedure) with server site binding may unexpectedly fail.

The following message is an example of the error message you might see:

%RDB−E−EXTFUN_FAIL, external routine failed to compile or execute successfully
−RDMS−E−EXTABORT, routine NNNNNNNNN execution has been aborted
−RDMS−E−RTNSBC_INITERR, Cannot init. external routine server site executor;
reason XX

Where NNNNNNNNN is the function name and XX is a decimal value, e.g., 41.

While such errors are possible they are very unlikely to be seen, especially on systems that have had
Oracle Rdb successfully installed. These errors usually indicate a problem with the environment. For
instance, ensure that images RDMXSMvv.EXE, RDMXSRvv.EXE and RDMXSMPvv.EXE (where
vv is the Rdb version) are installed and have the correct protections:

Directory DISK$:<SYS6.SYSCOMMON.SYSLIB>

RDMXSM70.EXE;3 183 8−APR−2004 09:37:31.36 (RWED,RWED,RWED,RE)
RDMXSMP70.EXE;3 159 8−APR−2004 09:37:31.54 (RWED,RWED,RWED,RE)
RDMXSR70.EXE;3 67 8−APR−2004 09:37:31.74 (RWED,RWED,RWED,RE)

Total of 3 files, 409 blocks.

DISK$:<SYS6.SYSCOMMON.SYSLIB>.EXE
 RDMXSM70;3 Open Hdr Shared Lnkbl
DISK$:<SYS6.SYSCOMMON.SYSLIB>.EXE

Oracle® Rdb for OpenVMS

8.1.3 RDMS−E−RTNSBC_INITERR, Cannot Init External Routine Server Site Executor 121

 RDMXSMP70;3 Open Hdr Shared Prot Lnkbl Safe
DISK$:<SYS6.SYSCOMMON.SYSLIB>.EXE
 RDMXSR70;3 Open Hdr Shared Lnkbl

8.1.4 AIJ Log Server Process May Loop Or Bugcheck

Bugs 2651475 and 1756433

Under unknown, but extremely rare conditions, on busy databases where the After Image Journal
(AIJ) Log Server process is enabled, the ALS process has been observed to enter a loop condition
writing AIJ information to the AIJ file(s).

In the worst case, this problem could cause all available journal files to be filled with repeating data.
If no remedial action were to be taken, this condition could cause the database to be shutdown and the
AIJ journals to be considered inaccessable.

The database is not corrupted by this problem.

Stopping and restarting the ALS process will clear the looping condition even if the ALS process
must be stopped using the STOP/ID command.

Stopping the ALS process will not impact production as AIJ writes will automatically revert to the
non−ALS behaviour.

In Oracle Rdb Release 7.0.7 the behaviour of Rdb has been changed so that should this problem be
detected, the ALS process will automatically shutdown producing a bugcheck dump file. This will
prevent any danger of filling all available journals and will ensure that the database remains available.

ALS may be safely restarted immediately as the conditions that cause such a loop are resolved during
recovery of the ALS process.

8.1.5 Optimization of Check Constraints

Bug 1448422

When phrasing constraints using the "CHECK" syntax, a poorer strategy can be chosen by the
optimizer than when the same or similar constraint is phrased using referential integrity (PRIMARY
and FOREIGN KEY) constraints. Following is an example.

I have two tables T1 and T2, both with one column, and I wish to ensure that all values in table T1
exist in T2. Both tables have an index on the referenced field. I could use a PRIMARY KEY
constraint on T2 and a FOREIGN KEY constraint on T1.

SQL> alter table t2
cont> alter column f2 primary key not deferrable;
SQL> alter table t1
cont> alter column f1 references t2 not deferrable;

Oracle® Rdb for OpenVMS

8.1.4 AIJ Log Server Process May Loop Or Bugcheck 122

When deleting from the PRIMARY KEY table, Oracle Rdb will only check for rows in the
FOREIGN KEY table where the FOREIGN KEY has the deleted value. This can be seen as an index
lookup on T1 in the retrieval strategy.

SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
 Index name I2 [1:1]
Index only retrieval of relation T1
 Index name I1 [1:1]
%RDB−E−INTEG_FAIL, violation of constraint T1_FOREIGN1 caused operation to fail

The failure of the constraint is not important. What is important is that Rdb efficiently detects that
only those rows in T1 with the same values as the deleted row in T2 can be affected.

It is necessary sometimes to define this type of relationship using CHECK constraints. This could be
necessary because the presence of NULL values in the table T2 precludes the definition of a primary
key on that table. This could be done with a CHECK constraint of the form:

SQL> alter table t1
cont> alter column f1
cont> check (f1 in (select * from t2)) not deferrable;
SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
 Index name I2 [1:1]
Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation T1
 Index name I1 [0:0]
 Cross block entry 2
 Conjunct Aggregate−F1 Conjunct
 Index only retrieval of relation T2
 Index name I2 [0:0]
%RDB−E−INTEG_FAIL, violation of constraint T1_CHECK1 caused operation to fail

The cross block is for the constraint evaluation. This retrieval strategy indicates that to evaluate the
constraint, the entire index on table T1 is being scanned and for each key, the entire index in table T2
is being scanned.

The behavior can be improved somewhat by using an equality join condition in the select clause of
the constraint:

SQL> alter table t1
cont> alter column f1
cont> check (f1 in (select * from t2 where f2=f1))
cont> not deferrable;

or:

SQL> alter table t1
cont> alter column f1
cont> check (f1=(select * from t2 where f2=f1))
cont> not deferrable;

In both cases, the retrieval strategy will look as follows:

SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2

Oracle® Rdb for OpenVMS

8.1.4 AIJ Log Server Process May Loop Or Bugcheck 123

 Index name I2 [1:1]
Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation T1
 Index name I1 [0:0]
 Cross block entry 2
 Conjunct Aggregate−F1 Conjunct
 Index only retrieval of relation T2
 Index name I2 [1:1]
%RDB−E−INTEG_FAIL, violation of constraint T1_CHECK1 caused operation to fail

While the entire T1 index is scanned, at least the value from T1 is used to perform an index lookup on
T2.

These restrictions result from semantic differences in the behavior of the "IN" and "EXISTS"
operators with respect to null handling, and the complexity of dealing with non−equality join
conditions.

To improve the performance of this type of integrity check on larger tables, it is possible to use a
series of triggers to perform the constraint check. The following triggers perform a similar check to
the constraints above.

SQL> create trigger t1_insert
cont> after insert on t1
cont> when (not exists (select * from t2 where f2=f1))
cont> (error) for each row;
SQL> create trigger t1_update
cont> after update on t1
cont> when (not exists (select * from t2 where f2=f1))
cont> (error) for each row;
SQL> ! A delete trigger is not needed on T1.
SQL> create trigger t2_delete
cont> before delete on t2
cont> when (exists (select * from t1 where f1=f2))
cont> (error) for each row;
SQL> create trigger t2_modify
cont> after update on t2
cont> referencing old as t2o new as t2n
cont> when (exists (select * from t1 where f1=t2o.f2))
cont> (error) for each row;
SQL> ! An insert trigger is not needed on T2.

The strategy for a delete on T2 is now:

SQL> delete from t2 where f2=1;
Aggregate−F1 Index only retrieval of relation T1
 Index name I1 [1:1]
Temporary relation Get Retrieval by index of relation T2
 Index name I2 [1:1]
%RDB−E−TRIG_INV_UPD, invalid update; encountered error condition defined for
trigger
−RDMS−E−TRIG_ERROR, trigger T2_DELETE forced an error

The trigger strategy is the index only retrieval displayed first. You will note that the index on T1 is
used to examine only those rows that may be affected by the delete.

Care must be taken when using this workaround as there are semantic differences in the operation of

Oracle® Rdb for OpenVMS

8.1.4 AIJ Log Server Process May Loop Or Bugcheck 124

the triggers, the use of "IN" and "EXISTS", and the use of referential integrity constraints.

This workaround is useful where the form of the constraint is more complex and cannot be phrased
using referential integrity constraints. For example, if the application is such that the value in table T1
may be spaces or NULLs to indicate the absence of a value, the above triggers could easily be
modified to allow for these semantics.

8.1.6 Dynamic Optimization Estimation Incorrect for
Ranked Indices

The dynamic optimization process was incorrectly calculating the cost of scanning indices of type
SORTED RANKED.

In the following example, the table being queried has the numbers one to one thousand in both fields.
The different ranges used should result in a different estimated cost. However, in all cases the ESTIM
phase computes the cost of scanning these indicies as 680:

SQL> select * from t where f1 between 1 and 2 and f2 between 2 and 1000;
~S#0003
Leaf#01 FFirst T Card=1000
 BgrNdx1 T1 [1:1] Fan=17
 BgrNdx2 T2 [1:1] Fan=17
~E#0003.01(1) Estim Ndx:Lev/Seps/DBKeys 1:34/0\680 2:34/0\680
~E#0003.01(1) BgrNdx1 EofData DBKeys=2 Fetches=2+0 RecsOut=1 #Bufs=1
~E#0003.01(1) FgrNdx FFirst DBKeys=1 Fetches=0+1 RecsOut=1`ABA
~E#0003.01(1) Fin Buf DBKeys=2 Fetches=0+0 RecsOut=1
 F1 F2
 2 2
1 row selected
SQL> select * from t where f1 between 2 and 1000 and f2 between 1 and 2;
~S#0004
Leaf#01 FFirst T Card=1000
 BgrNdx1 T1 [1:1] Fan=17
 BgrNdx2 T2 [1:1] Fan=17
~E#0004.01(1) Estim Ndx:Lev/Seps/DBKeys 1:34/0\680 2:34/0\680
~E#0004.01(1) BgrNdx1 EofData DBKeys=999 Fetches=0+10 RecsOut=1 #Bufs=10
~E#0004.01(1) FgrNdx FFirst DBKeys=1 Fetches=0+11 RecsOut=1`ABA
~E#0004.01(1) Fin Buf DBKeys=999 Fetches=0+0 RecsOut=1
 F1 F2
 2 2
1 row selected

In the first example (query 3), the index T1 on field F1 is the correct index to use, as the key range is
very small. In the second example (query 4), the index T2 on field F2 is the correct index to use.
However, in both cases, the indices are costed the same so no index reordering takes place.

Even in this small example, significantly more work is being performed in query 4 as can be observed
from the I/O counts.

This is a known problem in Oracle Rdb and it will be fixed in a future release.

The only workaround is to use indices of TYPE IS SORTED rather than of TYPE IS SORTED
RANKED.

Oracle® Rdb for OpenVMS

8.1.6 Dynamic Optimization Estimation Incorrect for Ranked Indices 125

8.1.7 Running Rdb Applications With the VMS Heap
Analyzer

When trying to debug an Rdb application under the OpenVMS Heap Analyzer (by defining LIBRTL
as SYS$LIBRARY:LIBRTL_INSTRUMENTED), the software will not attach to the database, and
returns

 RDB−E−UNAVAILABLE, Oracle Rdb is not available on your system

as if RDB is not running.

To solve this problem, there are two executables that must be installed as known images:

$install add sys$share:librtl_instrumented
$install add sys$share:dgit$libshr12

The error is misleading. Since parts of Rdb are installed as privileged images, any shareable images it
references, AND any images they, in turn, reference, must also be 'known'. By redirecting LIBRTL to
SYS$LIBRARY:LIBRTL_INSTRUMENTED, these extra images are referenced. If Rdb had directly
referenced the new image, a more accurate error, such as:

%DCL−W−ACTIMAGE, error activating image xxxxx

would have been reported.

8.1.8 RMU/RECOVER/AREA Needs Area List

Bug 1778243

When doing an RMU/RECOVER/AREA, without specifying a list of area names, there will be a new
version of the current active AIJ file created. This new version of the AIJ will have the next recovery
sequence number. If a subsequent recovery is applied, an error is generated indicating that the original
recovery sequence number cannot be found and the recovery will abort.

If a list of storage areas to be recovered is supplied, this behaviour does not occur and no new version
of the journal is created. It is recommended as best practice to use a list of storage areas when
recovering by area to avoid any subsequent confusion during recovery.

8.1.9 PAGE TRANSFER VIA MEMORY Disabled

Oracle internal testing has revealed that the "PAGE TRANSFER VIA MEMORY" option for global
buffers is not as robust as is needed for the Mission Critical environments where Oracle Rdb is often
deployed. This feature has been disabled in Oracle Rdb Version 7.0.xx. This feature is available in
Rdb Version 7.1.

8.1.10 RMU/VERIFY Reports PGSPAMENT or
PGSPMCLST Errors

Oracle® Rdb for OpenVMS

8.1.7 Running Rdb Applications With the VMS Heap Analyzer 126

RMU/VERIFY may sometimes report PGSPAMENT or PGSPMCLST errors when verifying storage
areas. These errors indicate that the Space Area Management ("SPAM") page fullness threshold for a
particular data page does not match the actual space usage on the data page. For a further discussion
of SPAM pages, consult the Oracle Rdb Guide to Database Maintenance.

In general, these errors will not cause any adverse affect on the operation of the database. There is
potential for space on the data page to not be totally utilized, or for a small amount of extra I/O to be
expended when searching for space in which to store new rows. But unless there are many of these
errors then the impact should be negligible.

It is possible for these inconsistencies to be introduced by errors in the Oracle Rdb product. When
those cases are discovered, Oracle Rdb is corrected to prevent the introduction of the inconsistencies.
It is also possible for these errors to be introduced during the normal operation of the product. The
following scenario can leave the SPAM pages inconsistent:

A process inserts a row on a page, and updates the threshold entry on the corresponding
SPAM page to reflect the new space utilization of the data page. The data page and SPAM
pages are not flushed to disk.

1.

Another process notifies the first process that it would like to access the SPAM page being
held by the process. The first process flushes the SPAM page changes to disk and releases the
page. Note that it has not flushed the data page.

2.

The first process then terminates abnormally (for example, from the DCL
STOP/IDENTIFICATION command). Since that process never flushed the data page to disk,
it never wrote the changes to the Recovery Unit Journal (RUJ) file. Since there were no
changes in the RUJ file for that data page, then the Database Recovery ("DBR") process did
not need to rollback any changes to the page. The SPAM page retains the threshold update
change made above even though the data page was never flushed to disk.

3.

While it would be possible to create mechanisms to ensure that SPAM pages do not become out of
synch with their corresponding data pages, the performance impact would not be trivial. Since these
errors are relatively rare and the impact is not significant, the introduction of these errors is
considered to be part of the normal operation of the Oracle Rdb product. If it can be proven that the
errors are not due to the scenario above then Oracle Product Support should be contacted.

PGSPAMENT and PGSPMCLST errors may be corrected by doing any one of the following
operations:

Recreate the database by performing:
SQL EXPORT1.
SQL DROP DATABASE2.
SQL IMPORT3.

♦

Recreate the database by performing:
RMU/BACKUP1.
SQL DROP DATABASE2.
RMU/RESTORE3.

♦

Repair the SPAM pages by using the RMU/REPAIR command. Note that the RMU/REPAIR
command does not write its changes to an after−image journal (AIJ) file. Therefore, Oracle
recommends that a full database backup be performed immediately after using the
RMU/REPAIR command.

♦

Oracle® Rdb for OpenVMS

8.1.7 Running Rdb Applications With the VMS Heap Analyzer 127

8.1.11 Behavior Change in 'With System Logical_Name
Translation' Clause

The way logical name translation is performed when 'with system logical_name translation' is specified in the
'location' clause of the 'create function' or the 'create routine' statements has changed. This change occured
between OpenVMS VAX V5.5−2 and OpenVMS V7.1.

When 'with system logical_name translation' is specified, any logical name in the location string is expanded
using only EXECUTIVE_MODE logical names. In OpenVMS VAX V5.5−2, the logical names are expanded
from the SYSTEM logical name table only. In OpenVMS V7.1, the logical names are expanded from the first
definition found when searching the logical name tables in (LNM$FILE_DEV) order.

Thus, if a logical is only defined in the EXECUTIVE_MODE SYSTEM table (and in no other
EXECUTIVE_MODE tables), then there will be no apparent change in behavior. However, if a logical name
has been defined in the EXECUTIVE_MODE GROUP table and in the EXECUTIVE_MODE SYSTEM
table, then on OpenVMS VAX V5.5 the SYSTEM table translation will be used and on OpenVMS V7.1 the
GROUP table translation will be used.

Oracle believes that this behavioral change is still in keeping with the secure intent of this clause for external
routines. An OpenVMS user must have SYSNAM privilege to define an EXEC mode logical in any table.
Therefore, it still provides a secure method of locating production sharable images for use by the Rdb server.

A future version of the Oracle Rdb SQL Reference manual will be reworded to remove the reference to the
SYSTEM logical name table in the description. The keyword SECURE will be synonymous with SYSTEM in
this context.

As an example, if the logical TEST_EXTRTN_1 is defined as:

$ show logical/access_mode=executive_mode test_extrtn_1
 "TEST_EXTRTN_1" = "NOSUCHIMG9" (LNM$PROCESS_TABLE)
 "TEST_EXTRTN_1" = "NOSUCHIMGA" (LNM$JOB_9D277AC0)
 "TEST_EXTRTN_1" = "NOSUCHIMGB" (TEST$GROUP_LOGICALS)
 "TEST_EXTRTN_1" = "DISK1:[TEST]EXTRTN.EXE" (LNM$SYSTEM_TABLE)

Then under OpenVMS VAX V5.5−2, TEST_EXTRTN_1 will be translated as
"DISK1:[TEST]EXTRTN.EXE" whereas under OpenVMS V7.1 it will be translated as "NOSUCHIMG9".

8.1.12 Carry−Over Locks and NOWAIT Transactions
Clarification

In NOWAIT transactions, the BLAST mechanism cannot be used. For the blocking user to receive the
BLAST signal, the requesting user must request the locked resource with WAIT (which a NOWAIT
transaction does not do). Oracle Rdb defines a resource called NOWAIT, which is used to indicate that a
NOWAIT transaction has been started. When a NOWAIT transaction starts, the user requests the NOWAIT
resource. All other database users hold a lock on the NOWAIT resource so that when the NOWAIT
transaction starts, all other users are notified with a NOWAIT BLAST. The BLAST causes blocking users to
release any carry−over locks. There can be a delay before the transactions with carry−over locks detect the
presence of the NOWAIT transaction and release their carry−over locks. You can detect this condition by
examining the stall messages. If the "Waiting for NOWAIT signal (CW)" stall message appears frequently,

Oracle® Rdb for OpenVMS

8.1.11 Behavior Change in 'With System Logical_Name Translation' Clause 128

then the application is probably experiencing a decrease in performance and you should consider disabling the
carry−over lock behavior.

8.1.13 Strict Partitioning May Scan Extra Partitions

When you use a WHERE clause with the less than (<) or greater than (>) operator and a value that is the same
as the boundary value of a storage map, Oracle Rdb scans extra partitions. A boundary value is a value
specified in the WITH LIMIT OF clause. The following example, executed while the logical name
RDMS$DEBUG_FLAGS is defined as "S", illustrates the behavior:

 ATTACH 'FILENAME MF_PERSONNEL';
 CREATE TABLE T1 (ID INTEGER, LAST_NAME CHAR(12), FIRST_NAME CHAR(12));
 CREATE STORAGE MAP M FOR T1 PARTITIONING NOT UPDATABLE
 STORE USING (ID)
 IN EMPIDS_LOW WITH LIMIT OF (200)
 IN EMPIDS_MID WITH LIMIT OF (400)
 OTHERWISE IN EMPIDS_OVER;
 INSERT INTO T1 VALUES (150,'Boney','MaryJean');
 INSERT INTO T1 VALUES (350,'Morley','Steven');
 INSERT INTO T1 VALUES (300,'Martinez','Nancy');
 INSERT INTO T1 VALUES (450,'Gentile','Russ');

 SELECT * FROM T1 WHERE ID > 400;
 Conjunct Get Retrieval sequentially of relation T1
 Strict Partitioning: part 2 3
 ID LAST_NAME FIRST_NAME
 450 Gentile Russ
 1 row selected

In the previous example, partition 2 does not need to be scanned. This does not affect the correctness of the
result. Users can avoid the extra scan by using values other than the boundary values.

8.1.14 Exclusive Access Transactions May Deadlock With
RCS Process

If a table is frequently accessed by long running transactions that request READ/WRITE access reserving the
table for EXCLUSIVE WRITE, and if the table has one or more indexes, you may experience deadlocks
between the user process and the Row Cache Server (RCS) process.

There are at least three suggested workarounds to this problem:

Reserve the table for SHARED WRITE.1.
Close the database and disable row cache for the duration of the exclusive transaction.2.
Change the checkpoint interval for the RCS process to a time longer than the time required to
complete the batch job and then trigger a checkpoint just before the batch job starts. Set the interval
back to a smaller interval after the checkpoint completes.

3.

8.1.15 Oracle Rdb and OpenVMS ODS−5 Volumes

The OpenVMS Version 7.2 release introduced an Extended File Specifications feature, which consists of two
major components:

Oracle® Rdb for OpenVMS

8.1.13 Strict Partitioning May Scan Extra Partitions 129

A new, optional, volume structure, ODS−5, which provides support for file names that are longer and
have a greater range of legal characters than in previous versions of OpenVMS.

•

Support for "deep" directory trees.•

ODS−5 was introduced primarily to provide enhanced file sharing capabilities for users of Advanced Server
for OpenVMS 7.2 (formerly known as PATHWORKS for OpenVMS), as well as DCOM and JAVA
applications.

In some cases, Oracle Rdb performs its own file and directory name parsing and explicitly requires ODS−2
(the traditional OpenVMS volume structure) file and directory name conventions to be followed. Because of
this knowledge, Oracle does not support any Oracle Rdb database file components (including root files,
storage area files, after image journal files, record cache backing store files, database backup files, after image
journal backup files, etc.) that utilize any non−ODS−2 file naming features. For this reason, Oracle
recommends that Oracle Rdb database components not be located on ODS−5 volumes.

Oracle does support Oracle Rdb database file components on ODS−5 volumes provided that all of these files
and directories used by Oracle Rdb strictly follow the ODS−2 file and directory name conventions. In
particular, all file names must be specified entirely in uppercase and "special" characters in file or directory
names are forbidden.

8.1.16 Clarification of the USER Impersonation Provided by
the Oracle Rdb Server

Bug 551240

In Oracle Rdb V6.1, a new feature was introduced which allowed a user to attach (or connect) to a database by
providing a username (USER keyword) and a password (USING keyword). This functionality allows the Rdb
Server to impersonate those users in two environments.

Remote Database Access. When DECnet is used as the remote transport, the Rdb/Dispatch layer of
Oracle Rdb uses the provided username and password, or proxy access to create a remote process
which matches the named user. However, in a remote connection over TCP/IP, the RDBSERVER
process is always logged into RDB$REMOTE rather than a specified user account. In this case the
Rdb Server impersonates the user by using the user's UIC (user identification code) during privilege
checking. The UIC is assigned by the OpenVMS AUTHORIZE utility.

•

SQL/Services database class services. When SQL/Services (possibly accessed by ODBC) accesses a
database, it allows the user to logon to the database and the SQL/Services server then impersonates
that user in the database.

•

When a database has access control established using OpenVMS rights identifiers, then access checking in
these two environments does not work as expected. For example, if a user JONES was granted the rights
identifier PAYROLL_ACCESS, then you would expect a table in the database with SELECT access granted
to PAYROLL_ACCESS to be accessible to JONES. This does not currently work because the Rdb Server
does not have the full OpenVMS security profile loaded, just the UIC. So only access granted to JONES is
allowed.

This problem results in an error being reported such as the following from ODBC:

[Oracle][ODBC][Rdb]%RDB−E−NO_PRIV privileged by database facility (#−1028)

Oracle® Rdb for OpenVMS

8.1.16 Clarification of the USER Impersonation Provided by the Oracle Rdb Server 130

This is currently a restriction in this release of Oracle Rdb. In the Rdb V7.1 release, support is provided to
inherit the users full security profile into the database.

8.1.17 Index STORE Clause WITH LIMIT OF Not Enforced in
Single Partition Map

Bug 413410

An index which has a STORE clause with a single WITH LIMIT OF clause and no OTHERWISE clause
doesn't validate the inserted values against the high limit. Normally values beyond the last WITH LIMIT OF
clause are rejected during INSERT and UPDATE statements.

Consider this example:

create table PTABLE (
 NR
 INTEGER,
 A
 CHAR (2));
create index NR_IDX
 on PTABLE (
 NR)
 type is HASHED
 store using (NR)
 in EMPIDS_LOW
 with limit of (10);

When a value is inserted for NR that exceeds the value 10, then an error such as
"%RDMS−E−EXCMAPLIMIT, exceeded limit on last partition in storage map for NR_IDX" should be
generated. However, this error is only reported if the index has two or more partitions.

A workaround for this problem is to create a CHECK constraint on the column to restrict the upper limit. e.g.
CHECK (NR <= 10). This check constraint should be defined as NOT DEFERRABLE and will be solved
using an index lookup.

This problem will be corrected in a future version of Oracle Rdb.

8.1.18 Unexpected NO_META_UPDATE Error Generated by
DROP MODULE ... CASCADE When Attached by
PATHNAME

Bug 755182

The SQL statement DROP MODULE ... CASCADE may sometimes generate an unexpected
NO_META_UPDATE error. This occurs when the session attaches to a database by PATHNAME.

SQL> drop module m1 cascade;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−OBJ_INUSE, object "M1P1" is referenced by M2.M2P1 (usage: Procedure)
−RDMS−E−MODNOTDEL, module "M1" has not been deleted

Oracle® Rdb for OpenVMS

8.1.17 Index STORE Clause WITH LIMIT OF Not Enforced in Single Partition Map 131

This error occurs because the CASCADE option is ignored because the Oracle CDD/Repository does not
support CASCADE. The workaround is to attach by FILENAME and perform the metadata operation.

In a future version of Oracle Rdb, an informational message will be issued describing the downgrade from
CASCADE to RESTRICT in such cases.

8.1.19 Application and Oracle Rdb Both Using SYS$HIBER

In application processes that use Oracle Rdb and the $HIBER system service (possibly via RTL routines such
as LIB$WAIT), it is important that the application ensures that the event being waited for has actually
occurred. Oracle Rdb uses $HIBER/$WAKE sequences for interprocess communications particularly when
the ALS (AIJ Log Server) or the Row Cache features are enabled.

Oracle Rdb's use of the $WAKE system service can interfere with other users of $HIBER (such as the routine
LIB$WAIT) that do not check for event completion, possibly causing a $HIBER to be unexpectedly resumed
without waiting at all.

To avoid these situations, consider altering the application to use a code sequence that avoids continuing
without a check for the operation (such as a delay or a timer firing) being complete.

The following pseudo−code shows one example of how a flag can be used to indicate that a timed−wait has
completed correctly. The wait does not complete until the timer has actually fired and set TIMER_FLAG to
TRUE. This code relies on ASTs being enabled.

ROUTINE TIMER_WAIT:
 BEGIN
 ! Clear the timer flag
 TIMER_FLAG = FALSE

 ! Schedule an AST for sometime in the future
 STAT = SYS$SETIMR (TIMADR = DELTATIME, ASTRTN = TIMER_AST)
 IF STAT <> SS$_NORMAL THEN LIB$SIGNAL (STAT)

 ! Hibernate. When the $HIBER completes, check to make
 ! sure that TIMER_FLAG is set indicating that the wait
 ! has finished.
 WHILE TIMER_FLAG = FALSE
 DO SYS$HIBER()
 END

ROUTINE TIMER_AST:
 BEGIN
 ! Set the flag indicating that the timer has expired
 TIMER_FLAG = TRUE

 ! Wake the main−line code
 STAT = SYS$WAKE ()
 IF STAT <> SS$_NORMAL THEN LIB$SIGNAL (STAT)
 END

Starting with OpenVMS V7.1, the LIB$WAIT routine has been enhanced via the FLAGS argument (with the
LIB$K_NOWAKE flag set) to allow an alternate wait scheme (using the $SYNCH system service) that can
avoid potential problems with multiple code sequences using the $HIBER system service. See the OpenVMS
RTL Library (LIB$) Manual for more information about the LIB$WAIT routine.

Oracle® Rdb for OpenVMS

8.1.19 Application and Oracle Rdb Both Using SYS$HIBER 132

8.1.20 IMPORT Unable to Import Some View Definitions

Bug 520651

View definitions that reference SQL functions, that is functions defined by the CREATE MODULE
statement, cannot currently be imported by the SQL IMPORT statement. This is because the views are defined
before the functions themselves exist.

The following example shows the errors from IMPORT.

IMPORTing view TVIEW
%SQL−F−NOVIERES, unable to import view TVIEW
%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−OBSOLETE_METADA, request references metadata objects that no
longer exist
−RDMS−E−RTNNEXTS, routine FORMAT_OUT does not exist in this database
%RDB−E−OBSOLETE_METADA, request references metadata objects that no
longer exist
−RDMS−F−TABNOTDEF, relation TVIEW is not defined in database

The following script can be used to demonstrate the problem.

create database filename badimp;
create table t (sex char);

create module TFORMAT
 language SQL

 function FORMAT_OUT (:s char)
 returns char(4);
 return (case :s
 when 'F' then 'Female'
 when 'M' then 'Male'
 else NULL
 end);
end module;

create view TVIEW (m_f) as
 select FORMAT_OUT (sex) from t;

commit;

export database filename badimp into exp;
drop database filename badimp;
import database from exp filename badimp;

This restriction is lifted in the Rdb V7.1 releases. Currently the workaround is to save the view definitions and
reapply them after the IMPORT completes.

This restriction does not apply to external functions, created using the CREATE FUNCTION statement, as
these database objects are defined before tables and views.

8.1.21 AIJSERVER Privileges

For security reasons, the AIJSERVER account ("RDMAIJSERVER") is created with only NETMBX and

Oracle® Rdb for OpenVMS

8.1.20 IMPORT Unable to Import Some View Definitions 133

TMPMBX privileges. These privileges are sufficient to start Hot Standby, in most cases.

However, for production Hot Standby systems, these privileges are not adequate to ensure continued
replication in all environments and workload situations. Therefore, Oracle recommends that the DBA provide
the following additional privileges for the AIJSERVER account:

ALTPRI
This privilege allows the AIJSERVER to adjust its own priority to ensure adequate quorum (CPU
utilization) to prompt message processing.

•

PSWAPM
This privilege allows the AIJSERVER to enable and disable process swapping, also necessary to
ensure prompt message processing.

•

SETPRV
This privilege allows the AIJSERVER to temporarily set any additional privileges it may need to
access the standby database or its server processes.

•

SYSPRV
This privilege allows the AIJSERVER to access the standby database rootfile, if necessary.

•

WORLD
This privilege allows the AIJSERVER to more accurately detect standby database server process
failure and handle network failure more reliably.

•

8.1.22 Lock Remastering and Hot Standby

When using the Hot Standby feature, Oracle recommends that the VMS distributed lock manager resource
tree be mastered on the standby node where Hot Standby is started. This can be using any of the following
methods:

Disable dynamic lock remastering. This can be done dynamically by setting the SYSGEN parameter
PE1 to the value 1.
When using this option, be sure that Hot Standby is started on the node where the standby database is
first opened.

•

Increasing the LOCKDIRWT value for the LRS node higher than any other node in the same cluster.
However, this is not a dynamic SYSGEN parameter, and a node re−boot is required.

•

Failure to prevent dynamic lock remastering may cause severe performance degradation for the standby
database, which ultimately may be reflected by decreased master database transaction throughput.

8.1.23 RDB_SETUP Privilege Error

Rdb Web Agent V3.0 exposes a privilege problem with Rdb V7.0 and later. This will be fixed in the next Rdb
7.0 release.

The RDB_SETUP function fails with %RDB−E−NO_PRIV, privilege denied by database facility.

It appears that the only workaround is to give users DBADM privilege. Oracle Corporation does not
recommend giving users the DBADM privilege.

Oracle® Rdb for OpenVMS

8.1.22 Lock Remastering and Hot Standby 134

8.1.24 Starting Hot Standby on Restored Standby Database
May Corrupt Database

If a standby database is modified outside of Hot Standby, then backed up and restored, Hot Standby will
appear to start up successfully but will corrupt the standby database. A subsequent query of the database will
return unpredictable results, possibly in a bugcheck in DIOFETCH$FETCH_ONE_LINE. When the standby
database is restored from a backup of itself, the database is marked as unmodified. Therefore, Hot Standby
cannot tell whether the database had been modified before the backup was taken.

WORKAROUND: None.

8.1.25 Restriction on Compound Statement Nesting Levels

The use of multiple nesting levels of compound statements such as CASE or IF−THEN−ELSE within
multistatement procedures can result in excessive memory usage during the compile of the procedure. Virtual
memory problems have been reported with 10 or 11 levels of nesting. The following example shows an
outline of the type of nesting that can lead to this problem.

CREATE MODULE MY_MOD LANGUAGE SQL
PROCEDURE MY PROCEDURE
 (PARAMETERS);

BEGIN
 DECLARE;

SET :VARS = 0;

SELECT;
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
CASE :FLAG ! Case #1
 WHEN 100 THEN SET ...;
 WHEN −811 THEN SET ...;
 WHEN 0 THEN
 SET ...; SELECT ...;
 GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
 CASE :FLAG ! Case #2
 WHEN 0 THEN SET ...;
 WHEN −811 THEN SET ...;
 WHEN 100 THEN
 UPDATE...; SET ...;
 GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
 IF :FLAG= 100 THEN SET ...; ! #1
 ELSE
 IF :FLAG < 0 THEN SET...; ! #2
 ELSE
 DELETE ...
 GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
 IF :FLAG= 100 THEN SET...; ! #3
 SET ...;
 ELSE
 IF :FLAG < 0 THEN SET...; ! #4
 ELSE
 IF IN_CHAR_PARAM = 'S' THEN ! #5
 UPDATE ...
 GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
 IF :FLAG= 100 THEN SET ...; ! #6

Oracle® Rdb for OpenVMS

8.1.24 Starting Hot Standby on Restored Standby Database May Corrupt Database 135

 ELSE
 IF :FLAG < 0 THEN SET...; ! #7
 END IF; ! #7
 END IF; ! #6
 END IF; ! #5

 IF :FLAG = 0 THEN ! #5
 UPDATE ...
 GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
 IF :FLAG= 100 THEN SET ...; ! #6
 ELSE
 IF :FLAG < 0 THEN SET ...; ! #7
 ELSE
 DELETE ...
 GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE:
 IF :FLAG= 100 THEN SET ...; ! #8
 ELSE
 IF :FLAG < 0 THEN SET ...; ! #9
 ELSE
 DELETE ...;
 GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
 IF :FLAG= 100 THEN SET ...; ! #10
 SET ...;
 ELSE
 IF :FLAG < 0 THEN SET ...; ! #11
 END IF; (11 end if's for #11 − #1)
 ELSE SET ...;
 END CASE; ! Case #2
 ELSE SET ...;
 END CASE; ! Case #1
END;
END MODULE;

Workaround: Reduce the complexity of the multistatement procedure. Use fewer levels of compound
statement nesting by breaking the multistatement procedure into smaller procedures or by using the CALL
statement to execute nested stored procedures.

8.1.26 Back Up All AIJ Journals Before Performing a Hot
Standby Switchover Operation

Prior to performing a proper Hot Standby switchover operation from the old master database to the new
master database (old standby database), be sure to back up ALL AIJ journals.

If you do not back up the AIJ journals on the old master database prior to switchover, they will be initialized
by the Hot Standby startup operation, and you will not have a backup of those AIJ journals.

Failure to back up these journals may place your new master database at risk of not being able to be
recovered, requiring another fail−over in the event of system failure.

8.1.27 Concurrent DDL and Read−Only Transaction on the
Same Table Not Compatible

It is possible that a read−only transaction could generate a bugcheck at DIOBND$FETCH_AIP_ENT + 1C4 if
there is an active, uncommitted transaction that is making metadata changes to the same table. Analysis shows

Oracle® Rdb for OpenVMS

8.1.26 Back Up All AIJ Journals Before Performing a Hot Standby Switchover Operation 136

that the snapshot transaction is picking up stale metadata information. Depending on what metatdata
modifications are taking place, it is possible for metadata information to be removed from the system tables
but still exist in the snapshot file. When the read−only transaction tries to use that information, it no longer
exists and causes a bugcheck.

The following example shows the actions of the two transactions:

A: B:
attach
set transaction read write
 attach
 set transaction read only
drop index emp_last_name
 select * from employees
 ...bugcheck...

The only workaround is to avoid running the two transactions together.

8.1.28 Oracle Rdb and the SRM_CHECK Tool

The Alpha Architecture Reference Manual, Third Edition (AARM) describes strict rules for using interlocked
memory instructions. The HP Alpha 21264 (EV6) processor and all future Alpha processors are more
stringent than their predecessors in their requirement that these rules be followed. As a result, code that has
worked in the past despite noncompliance may now fail when executed on systems featuring the new 21264
processor.

Oracle Rdb Release 7.0.3 supports the HP Alpha 21264 (EV6) processor. Oracle has performed extensive
testing and analysis of the Rdb code to ensure that it is compliant with the rules for using interlocked memory
instructions.

However, customers using the HP supplied SRM_CHECK tool may find that several of the Oracle Rdb
images cause the tool to report potential alpha architecture violations. Although SRM_CHECK can normally
identify a code section in an image by the section's attributes, it is possible for OpenVMS images to contain
data sections with those same attributes. As a result, SRM_CHECK may scan data as if it were code, and
occasionally, a block of data may look like a noncompliant code sequence. This is the case with the Oracle
Rdb supplied images. There is no actual instruction stream violation.

However, customers must use the SRM_CHECK tool on their own application executable image files. It is
possible that applications linked with very old version of Oracle Rdb (versions prior to Oracle Rdb Release
6.0−05) could have included illegal interlocked memory instruction sequences produced by very old versions
of compilers. This code was included in the Oracle Rdb object library files for some very old versions of
Oracle Rdb.

If errant instruction sequences are detected in the objects supplied by the Oracle Rdb object libraries, the
correct action is to relink the application with a more−current version of Oracle Rdb.

Additional information about the HP Alpha 21264 (EV6) processor interlocked memory instructions issues is
available at:

http://www.openvms.digital.com/openvms/21264_considerations.html

Oracle® Rdb for OpenVMS

8.1.28 Oracle Rdb and the SRM_CHECK Tool 137

8.1.29 Oracle RMU Checksum_Verification Qualifier

The Oracle Rdb RMU BACKUP database backup command includes a Checksum_Verification qualifier.

Specifying Checksum_Verification requests that the RMU Backup command verify the checksum stored on
each database page before it is backed up, thereby providing end−to−end error detection on the database I/O.

The Checksum_Verification qualifier uses additional CPU resources but can provide an extra measure of
confidence in the quality of the data backed up. Use of the Checksum_Verification qualifier offers an
additional level of data security and use of the Checksum_Verification qualifier permits Oracle RMU to detect
the possibility that the data it is reading from these disks has only been partially updated.

Note, however, that if you specify the Nochecksum_Verification qualifier, and undetected corruptions exist in
your database, the corruptions are included in your backup file and restored when you restore the backup file.
Such a corruption might be difficult to recover from, especially if it is not detected until weeks or months after
the restore operation is performed.

Oracle Corporation recommends that you use the Checksum_Verification qualifier with all database backup
operations because of the improved data integrity this qualifier provides.

Unfortunately, due to an oversight, for versions of Oracle Rdb prior to Version 8.0, the default for online
backups is the Nochecksum_Verification qualifier. When you do not specify the Checksum_Verification
qualifier on all of your RMU database backup commands.

8.1.30 Do Not Use HYPERSORT with
RMU/OPTIMIZE/AFTER_JOURNAL (Alpha)

OpenVMS Alpha V7.1 introduced the high−performance Sort/Merge utility (also known as HYPERSORT).
This utility takes advantage of the Alpha architecture to provide better performance for most sort and merge
operations.

The high−performance Sort/Merge utility supports a subset of the SOR routines. Unfortunately, the
high−performance Sort/Merge utility does not support several of the interfaces used by the
RMU/OPTIMIZE/AFTER_JOURNAL command. In addition, the high−performance Sort/Merge utility
reports no error or warning when being called with the unsupported options used by the
RMU/OPTIMIZE/AFTER_JOURNAL command.

For this reason, the use of the high−performance Sort/Merge utility is not supported for the
RMU/OPTIMIZE/AFTER_JOURNAL command. Do not define the logical name SORTSHR to reference
HYPERSORT.EXE.

8.1.31 Restriction on Using /NOONLINE with Hot Standby

When a user process is performing a read−only transaction on a standby database, an attempt to start
replication on the standby database with the /NOONLINE qualifier will fail with the following error, and the
database will be closed cluster−wide:

%RDMS−F−OPERCLOSE, database operator requested database shutdown

Oracle® Rdb for OpenVMS

8.1.29 Oracle RMU Checksum_Verification Qualifier 138

In a previous release, the following error was returned and the process doing the read−only transaction was
not affected:

%RDMS−F−STBYDBINUSE, standby database cannot be exclusively accessed for
replication

As a workaround, if exclusive access is necessary to the standby database, terminate any user processes before
starting replication with the /NOONLINE qualifier.

This restriction is due to another bug fix and will be lifted in a future release of Oracle Rdb.

8.1.32 SELECT Query May Bugcheck with
PSII2SCANGETNEXTBBCDUPLICATE Error

Bug 683916

A bugcheck could occur when a ranked B−tree index is used in a query after a database has been upgraded to
Release 7.0.1.3. This is a result of index corruption that was introduced in previous versions of Oracle Rdb.
This corruption has been fixed and indexes created using Release 7.0.1.3 will not be impacted.

As a workaround, delete the affected index and re−create it under Oracle Rdb Release 7.0.1.3 or later.

8.1.33 DBAPack for Windows 3.1 is Deprecated

Oracle Enterprise Manager DBAPack will no longer be supported for use on Windows 3.1.

8.1.34 Determining Mode for SQL Non−Stored Procedures

Bug 506464.

Although stored procedures allow parameters to be defined with the modes IN, OUT, and INOUT, there is no
similar mechanism provided for SQL module language or SQL precompiled procedures. However, SQL still
associates a mode with a parameter using the following rules:

Any parameter which is the target of an assignment is considered an OUT parameter. Assignments consist of
the following:

The parameter is assigned a value with the SET or GET DIAGNOSTICS statement. For example:

set :p1 = 0;
get diagnostics :p2 = TRANSACTION_ACTIVE;

•

The parameter is assigned a value with the INTO clause of an INSERT, UPDATE, or SELECT
statement. For example:

insert into T (col1, col2)
 values (...)
 returning dbkey into :p1;

update accounts
 set account_balance = account_balance + :amount
 where account_number = :p1

•

Oracle® Rdb for OpenVMS

8.1.32 SELECT Query May Bugcheck with PSII2SCANGETNEXTBBCDUPLICATE Error 139

 returning account_balance
 into :current_balance;

select last_name
 into :p1
 from employees
 where employee_id = '00164';

The parameter is passed on a CALL statement as an OUT or INOUT argument. For example:

begin
call GET_CURRENT_BALANCE (:p1);
end;

•

Any parameter that is the source for a query is considered an IN parameter. Query references include:

The parameter appears in the SELECT list, WHERE or HAVING clauses of a SELECT, or DELETE
statement. For example:

select :p1 || last_name, count(*)
 from T
 where last_name like 'Smith%'
 group by last_name
 having count(*) > :p2;

delete from T
 where posting_date < :p1;

•

The parameter appears on the right side of the assignment in a SET statement or SET clause of an
UPDATE statement. For example:

set :p1 = (select avg(salary)
 from T
 where department = :p2);
update T
 set col1 = :p1
 where ...;

•

The parameter is used to provide a value to a column in an INSERT statement. For example:

insert into T (col1, col2)
 values (:p1, :p2);

•

The parameter is referenced by an expression in a TRACE, CASE, IF/ELSEIF, WHILE statement, or
by the DEFAULT clause of a variable declaration. For example:

begin
declare :v integer default :p1;
DO_LOOP:
while :p2 > :p1
loop
 if :p1 is null then
 leave DO_LOOP;
 end if;
 set :p2 = :p2 + 1;
 ...;
 trace 'Loop at ', :p2;
end loop;
end;

•

The parameter is passed on a CALL statement as an INOUT or IN argument. For example:

begin

•

Oracle® Rdb for OpenVMS

8.1.32 SELECT Query May Bugcheck with PSII2SCANGETNEXTBBCDUPLICATE Error 140

call SET_LINE_SPEED (:p1);
end;

SQL only copies values from the client (application parameters) to the procedure running in the database
server if it is marked as either an IN or INOUT parameter. SQL only returns values from the server to the
client application parameter variables if the parameter is an OUT or INOUT parameter.

If a parameter is considered an OUT only parameter, then it must be assigned a value within the procedure,
otherwise the result returned to the application is considered undefined. This could occur if the parameter is
used within a conditional statement such as CASE or IF/ELSEIF. In the following example, the value returned
by :p2 would be undefined if :p1 were negative or zero:

begin
if :p1 > 0 then
 set :p2 = (select count(*)
 from T
 where col1 = :p1);
end if;
end;

It is the responsibility of the application programmer to ensure that the parameter is correctly assigned values
within the procedure. A workaround is to either explicitly initialize the OUT parameter, or make it an INOUT
parameter. For example:

begin
if :p1 > 0 then
 set :p2 = (select count(*)
 from T
 where col1 = :p1);
elseif :p2 is null then
 begin
 end;
end if;
end;

The empty statement will include a reference to the parameter to make it an IN parameter as well as an OUT
parameter.

8.1.35 DROP TABLE CASCADE Results in
%RDB−E−NO_META_UPDATE Error

An error could result when a DROP TABLE CASCADE statement is issued. This occurs when the following
conditions apply:

A table is created with an index defined on the table.•
A storage map is created with a placement via index.•
The storage map is a vertical record partition storage map with two or more STORE COLUMNS
clauses.

•

The error message given is %RDB−E−NO_META_UPDATE, metadata update failed.

The following example shows a table, index, and storage map definition followed by a DROP TABLE
CASCADE statement and the resulting error message:

Oracle® Rdb for OpenVMS

8.1.35 DROP TABLE CASCADE Results in %RDB−E−NO_META_UPDATE Error 141

SQL> CREATE TABLE VRP_TABLE (ID INT, ID2 INT);
SQL> COMMIT;
SQL> CREATE UNIQUE INDEX VRP_IDX ON VRP_TABLE (ID)
SQL> STORE IN EMPIDS_LOW;
SQL> COMMIT;
SQL> CREATE STORAGE MAP VRP_MAP
cont> FOR VRP_TABLE
cont> PLACEMENT VIA INDEX VRP_IDX
cont> ENABLE COMPRESSION
cont> STORE COLUMNS (ID)
cont> IN EMPIDS_LOW
cont> STORE COLUMNS (ID2)
cont> IN EMPIDS_MID;
SQL> COMMIT;
SQL>
SQL> DROP TABLE VRP_TABLE CASCADE;
SQL> −− Index VRP_IDX is also being dropped.
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−WISH_LIST, feature not implemented yet
−RDMS−E−VRPINVALID, invalid operation for storage map "VRP_MAP"

The workaround to this problem is to first delete the storage map, and then delete the table using the
CASCADE option. The following example shows the workaround. The SHOW statement indicates that the
table, index, and storage map were deleted:

SQL> DROP STORAGE MAP VRP_MAP;
SQL> DROP TABLE VRP_TABLE CASCADE;
SQL> −− Index VRP_IDX is also being dropped.
SQL> COMMIT;
SQL> SHOW TABLE VRP_TABLE
No tables found
SQL> SHOW INDEX VRP_IDX
No indexes found
SQL> SHOW STORAGE MAP VRP_MAP
No Storage Maps Found

This problem will be corrected in a future version of Oracle Rdb.

8.1.36 Bugcheck Dump Files with Exceptions at
COSI_CHF_SIGNAL

In certain situations, Oracle Rdb bugcheck dump files will indicate an exception at COSI_CHF_SIGNAL.
This location is, however, not the address of the actual exception. The actual exception occurred at the
previous call frame on the stack (the one listed as the next "Saved PC" after the exception).

For example, consider the following bugcheck file stack information:

 $ SEARCH RDSBUGCHK.DMP "EXCEPTION","SAVED PC","−F−","−E−"

 ***** Exception at 00EFA828 : COSI_CHF_SIGNAL + 00000140
 %COSI−F−BUGCHECK, internal consistency failure
 Saved PC = 00C386F0 : PSIINDEX2JOINSCR + 00000318
 Saved PC = 00C0BE6C : PSII2BALANCE + 0000105C
 Saved PC = 00C0F4D4 : PSII2INSERTT + 000005CC
 Saved PC = 00C10640 : PSII2INSERTTREE + 000001A0
 .
 .

Oracle® Rdb for OpenVMS

8.1.36 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL 142

 .

In this example, the exception actually occurred at PSIINDEX2JOINSCR offset 00000318. If you have a
bugcheck dump with an exception at COSI_CHF_SIGNAL, it is important to note the next "Saved PC"
because it will be needed when working with Oracle Rdb Support Services.

8.1.37 Interruptions Possible when Using Multistatement or
Stored Procedures

Long running multistatement or stored procedures can cause other users in the database to be interrupted by
holding resources needed by those other users. Some resources obtained by the execution of a multistatement
or stored procedure will not be released until the multistatement or stored procedure finishes. This problem
can be encountered even if the statement contains COMMIT or ROLLBACK statements.

The following example demonstrates the problem. The first session enters an endless loop; the second session
attempts to backup the database, but it is permanently interrupted:

Session 1

SQL> ATTACH 'FILE MF_PERSONNEL';
SQL> CREATE FUNCTION LIB$WAIT (IN REAL BY REFERENCE)
cont> RETURNS INT;
cont> EXTERNAL NAME LIB$WAIT
cont> LOCATION 'SYS$SHARE:LIBRTL.EXE'
cont> LANGUAGE GENERAL
cont> GENERAL PARAMETER STYLE
cont> VARIANT;
SQL> COMMIT;
SQL> EXIT;

$ SQL
SQL> ATTACH 'FILE MF_PERSONNEL';
SQL> BEGIN
cont> DECLARE :LAST_NAME LAST_NAME_DOM;
cont> DECLARE :WAIT_STATUS INTEGER;
cont> LOOP
cont> SELECT LAST_NAME INTO :LAST_NAME
cont> FROM EMPLOYEES WHERE EMPLOYEE_ID = '00164';
cont> ROLLBACK;
cont> SET :WAIT_STATUS = LIB$WAIT (5.0);
cont> SET TRANSACTION READ ONLY;
cont> END LOOP;
cont> END;

Session 2

$ RMU/BACKUP/LOG/ONLINE MF_PERSONNEL MF_PERSONNEL

From a third session we can see that the backup process is waiting for a lock held in the first session:

$ RMU/SHOW LOCKS /MODE=BLOCKING MF_PERSONNEL
==
SHOW LOCKS/BLOCKING Information
==

Oracle® Rdb for OpenVMS

8.1.37 Interruptions Possible when Using Multistatement or Stored Procedures 143

−−
Resource: nowait signal

 ProcessID Process Name Lock ID System ID Requested Granted
 −−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−
Waiting: 20204383 RMU BACKUP..... 5600A476 00010001 CW NL
Blocker: 2020437B SQL............ 3B00A35C 00010001 PR PR
$

There is no workaround for this restriction. When the multistatement or stored procedure finishes execution,
the resources needed by other processes will be released.

8.1.38 Row Cache Not Allowed on Standby Database While
Hot Standby Replication Is Active

The row cache feature may not be active on a Hot Standby database while replication is taking place. The Hot
Standby feature will not start if row cache is active on the standby database.

This restriction exists because rows in the row cache are accessed using logical dbkeys. However, information
transferred to the Hot Standby database from the after−image journal facility only contains physical dbkeys.
Because there is no way to maintain rows in the cache using the Hot Standby processing, the row cache must
be disabled on the standby database when the standby database is open and replication is active. The master
database is not affected; the row cache feature and the Hot Standby feature may be used together on a master
database.

The row cache feature should be identically configured on the master and standby databases in the event
failover occurs, but the row cache feature must not be activated on the standby database until it becomes the
master.

A new command qualifier, ROW_CACHE=DISABLED, has been added to the RMU/OPEN command to
disable the row cache feature on the standby database. To open the Hot Standby database prior to starting
replication, use the ROW_CACHE=DISABLED qualifier on the RMU/OPEN command.

8.1.39 Hot Standby Replication Waits when Starting if
Read−Only Transactions Running

Hot Standby replication will wait to start if there are read−only (snapshot) transactions running on the standby
database. The log roll−forward server (LRS) will wait until the read−only transactions commit, and then
replication will continue.

This is an existing restriction of the Hot Standby software. This release note is intended to complement the
Hot Standby documentation.

8.1.40 Error when Using the
SYS$LIBRARY:SQL_FUNCTIONS70.SQL Oracle Functions
Script

If your programming environment is not set up correctly, you may encounter problems running the

Oracle® Rdb for OpenVMS

8.1.38 Row Cache Not Allowed on Standby Database While Hot Standby Replication Is Active 144

SYS$LIBRARY:SQL_FUNCTIONS70.SQL script used to set up the Oracle7 functions being supplied with
Oracle Rdb.

The following example shows the error:

%RDB−E−EXTFUN_FAIL, external routine failed to compile or execute successfully
−RDMS−E−INVRTNUSE, routine RDB$ORACLE_SQLFUNC_INTRO can not be used, image
"SQL$FUNCTIONS" not activated
−RDMS−I−TEXT, Error activating image
DISK:[DIR]SQL$FUNCTIONS.;, File not found

To resolve this problem, use the @SYS$LIBRARY:RDB$SETVER to set up the appropriate logical names.
This will be necessary for programs that use the functions as well.

In a standard environment, use the command shown in the following example:

$ @SYS$LIBRARY:RDB$SETVER S

In a multiversion environment, use the command shown in the following example:

$ @SYS$LIBRARY:RDB$SETVER 70

8.1.41 DEC C and Use of the /STANDARD Switch

Bug 394451

The SQL$PRE compiler examines the system to know which dialect of C to generate. That default can be
overwritten by using the /CC=[DECC/VAXC] switch. The /STANDARD switch should not be used to choose
the dialect of C.

Support for DEC C was added to the product with V6.0 and this note is meant to clarify that support, not to
indicate a change. It is possible to use /STANDARD=RELAXED_ANSI89 or /STANDARD=VAXC
correctly, but this is not recommended.

The following example shows both the right and wrong way to compile an Oracle Rdb SQL program. Assume
a symbol SQL$PRE has been defined, and DEC C is the default C compiler on the system:

 $ SQL$PRE/CC ! This is correct.
 $ SQL$PRE/CC=DECC ! This is correct.
 $ SQL$PRE/CC=VAXC ! This is correct.

 $ SQL$PRE/CC/STANDARD=VAXC ! This is incorrect.

Notice that the /STANDARD switch has other options in addition to RELAXED_ANSI89 and VAX C. Those
are also not supported.

Oracle® Rdb for OpenVMS

8.1.41 DEC C and Use of the /STANDARD Switch 145

8.1.42 Excessive Process Page Faults and Other
Performance Considerations During Oracle Rdb Sorts

Excessive hard or soft page faulting can be a limiting factor of process performance. Sometimes this page
faulting occurs during Oracle Rdb sort operations. This note describes how page faulting can occur and some
ways to help control, or at least understand, it.

One factor contributing to Oracle Rdb process page faulting is sorting operations. Common causes of sorts
include the SQL GROUP BY, ORDER BY, UNION, and DISTINCT clauses specified for query and index
creation operations. Defining the logical name RDMS$DEBUG_FLAGS to "RS" can help determine when
Oracle Rdb sort operations are occurring and to display the sort keys and statistics.

Oracle Rdb includes its own copy of the OpenVMS SORT32 code within the Oracle Rdb images and does not
generally call the routines in the OpenVMS run−time library. A copy of the SORT32 code is used to provide
stability between versions of Oracle Rdb and OpenVMS and because Oracle Rdb calls the sort routines from
executive processor mode which is difficult to do using the SORT32 sharable image. Database import and
RMU load operations call the OpenVMS sort run−time library.

At the beginning of a sort operation, the sort code allocates some memory for working space. The sort code
uses this space for buffers, in−memory copies of the data, and sorting trees.

Sort code does not directly consider the process quotas or parameters when allocating memory. The effects of
WSQUOTA and WSEXTENT are indirect. At the beginning of each sort operation, the sort code attempts to
adjust the process' working set to the maximum possible size using the $ADJWSL system service specifying a
requested working set limit of %X7FFFFFFF pages (the maximum possible). Sort code then uses a value of
75% of the returned working set for virtual memory scratch space. The scratch space is then initialized and the
sort begins.

The initialization of the scratch space generally causes page faults to access the pages newly added to the
working set. Pages that were in the working set already may be faulted out as new pages are faulted in. Once
the sort operation completes, the pages that may have been faulted out of the working set are likely to be
faulted back into the working set.

When a process' working set is limited by the working set quota (WSQUOTA) parameter and the working set
extent (WSEXTENT) parameter is a much larger value, the first call to the sort routines can cause many page
faults as the working set grows. Using a value of WSEXTENT that is closer to WSQUOTA can help reduce
the impact of this case.

With some OpenVMS versions, AUTOGEN sets the SYSGEN parameter PQL_MWSEXTENT equal to the
WSMAX parameter. This means that all processes on the system end up with WSEXTENT the same as
WSMAX. Because WSMAX might be quite high, sorting might result in excessive page faulting. You may
want to explicitly set PQL_MWSEXTENT to a lower value if this is the case on your system.

Sort work files are another factor to consider when tuning Oracle Rdb sort operations. When the operation
cannot be done in available memory, sort code will use temporary disk files to hold the data as it is being
sorted. The Oracle Rdb Guide to Performance and Tuning contains more detailed information about sort work
files.

The logical name RDMS$BIND_SORT_WORKFILES specifies how many work files sort code is to use if
work files are required. The default is 2, and the maximum number is 10. The work files can be individually

Oracle® Rdb for OpenVMS

8.1.42 Excessive Process Page Faults and Other Performance Considerations During Oracle Rdb Sorts146

controlled by the SORTWORKn logical names (where n is from 0 through 9). You can increase the efficiency
of sort operations by assigning the location of the temporary sort work files to different disks. These
assignments are made by using up to 10 logical names, SORTWORK0 through SORTWORK9.

Normally, sort code places work files in the user's SYS$SCRATCH directory. By default, SYS$SCRATCH is
the same device and directory as the SYS$LOGIN location. Spreading the I/O load over many disks improves
efficiency as well as performance by taking advantage of the system resources and helps prevent disk I/O
bottlenecks. Specifying that a user's work files will reside on separate disks permits overlap of the sort
read/write cycle. You may also encounter cases where insufficient space exists on the SYS$SCRATCH disk
device, such as when Oracle Rdb builds indexes for a very large table. Using the SORTWORK0 through
SORTWORK9 logical names can help you avoid this problem.

Note that sort code uses the work files for different sorted runs, and then merges the sorted runs into larger
groups. If the source data is mostly sorted, then not every sort work file may need to be accessed. This is a
possible source of confusion because even with 10 sort work files, it is possible to exceed the capacity of the
first sort file, and the sort operation will fail never having accessed the remaining 9 sort work files.

Note that the logical names RDMS$BIND_WORK_VM and RDMS$BIND_WORK_FILE do not affect or
control the operation of sort. These logical names are used to control other temporary space allocations within
Oracle Rdb.

8.1.43 Performance Monitor Column Mislabeled

The File IO Overview statistics screen, in the Rdb Performance Monitor, contains a column labeled Pages
Checked. The column should be labeled Pages Discarded to correctly reflect the statistic displayed.

8.1.44 Restriction Using Backup Files Created Later than
Oracle Rdb Release 7.0.1

Bug 521583

Backup files created using Oracle Rdb releases later than 7.0.1 cannot be restored using Oracle Rdb Release
7.0.1. To fix a problem in a previous release, some internal backup file data structures were changed. These
changes are not backward compatible with Oracle Rdb Release 7.0.1.

If you restore the database using such a backup file, then any attempt to access the restored database may
result in unpredictable behavior, even though a verify operation may indicate no problems.

There is no workaround to this problem. For this reason, Oracle Corporation strongly recommends performing
a full and complete backup both before and after the upgrade from Release 7.0.1 to later releases of Oracle
Rdb.

8.1.45 RMU Backup Operations and Tape Drive Types

When using more than one tape drive for an RMU backup operation, all the tape drives must be of the same
type. For example, all the tape drives must be either TA90s or TZ87s or TK50s. Using different tape drive
types (one TK50 and one TA90) for a single database backup operation may make database restoration
difficult or impossible.

Oracle® Rdb for OpenVMS

8.1.43 Performance Monitor Column Mislabeled 147

Oracle RMU attempts to prevent using different tape drive densities during a backup operation, but is not able
to detect all invalid cases and expects that all tape drives for a backup are of the same type.

As long as all the tapes used during a backup operation can be read by the same type of tape drive during a
restore operation, the backup is likely to be valid. This may be the case, for example, when using a TA90 and
a TA90E.

Oracle recommends that, on a regular basis, you test your backup and recovery procedures and environment
using a test system. You should restore the databases and then recover them using AIJs to simulate failure
recovery of the production system.

Consult the Oracle Rdb Guide to Database Maintenance, the Oracle Rdb Guide to Database Design and
Definition, and the Oracle RMU Reference Manual for additional information about Oracle Rdb backup and
restore operations.

8.1.46 Use of Oracle Rdb from Shared Images

Bug 470946

If code in the image initialization routine of a shared image makes any calls into Oracle Rdb, through SQL or
any other means, access violations or other unexpected behavior may occur if Oracle Rdb's images have not
had a chance to do their own initialization.

To avoid this problem, applications must do one of the following:

Do not make Oracle Rdb calls from the initialization routines of shared images.•
Link in such a way that the RDBSHR.EXE image initializes first. This can be done by placing the
reference to RDBSHR.EXE and any other Oracle Rdb shared images last in the linker options file.

•

8.1.47 Restriction Added for CREATE STORAGE MAP on
Table with Data

Oracle Rdb Releease 7.0 added support that allows a storage map to be added to an existing table which
contains data. The restrictions listed for Oracle Rdb Release 7.0 were:

The storage map must be a simple map that references only the default storage area and represents the
current (default) mapping for the table. The default storage area is either RDB$SYSTEM or the area
name provided by the CREATE DATABASE...DEFAULT STORAGE AREA clause.

•

The new map cannot change THRESHOLDS or COMPRESSION for the table, nor can it use the
PLACEMENT VIA INDEX clause. It can only contain one area and cannot be vertically partitioned.
This new map simply describes the mapping as it exists by default for the table.

•

This release of Rdb adds the additional restriction that the storage map may not include a WITH LIMIT clause
for the storage area. The following example shows the reported error:

SQL> CREATE TABLE MAP_TEST1 (A INTEGER, B CHAR(10));
SQL> CREATE INDEX MAP_TEST1_INDEX ON MAP_TEST1 (A);
SQL> INSERT INTO MAP_TEST1 (A, B) VALUES (3, 'Third');
1 row inserted

Oracle® Rdb for OpenVMS

8.1.46 Use of Oracle Rdb from Shared Images 148

SQL> CREATE STORAGE MAP MAP_TEST1_MAP FOR MAP_TEST1
cont> STORE USING (A) IN RDB$SYSTEM
cont> WITH LIMIT OF (10); −− can't use WITH LIMIT clause
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−RELNOTEMPTY, table "MAP_TEST1" has data in it
−RDMS−E−NOCMPLXMAP, can not use complex map for non−empty table

8.1.48 Oracle Rdb Workload Collection Can Stop Hot
Standby Replication

If you are replicating your Oracle Rdb database using the Oracle Hot Standby option, you must not use the
workload collection option. By default, workload collection is disabled. However, if you enabled workload
collection, you must disable it on the master database prior to performing a backup operation on that master
database if it will be used to create the standby database for replication purposes. If you do not disable
workload collection, it could write workload information to the standby database and prevent replication
operations from occurring.

The workaround included at the end of this section describes how to disable workload collection on the master
database and allow the Hot Standby software to propagate the change to the standby database automatically
during replication operations.

Background Information

By default, workload collection and cardinality collection are automatically disabled when Hot Standby
replication operations are occurring on the standby database. However, if replication stops (even for a brief
network failure), Oracle Rdb potentially can start a read/write transaction on the standby database to write
workload collection information. Then, because the standby database is no longer synchronized
transactionally with the master database, replication operations cannot restart.

Note

The Oracle Rdb optimizer can update workload collection information in the
RDB$WORKLOAD system table even though the standby database is opened exclusively
for read−only queries. A read/write transaction is started during the disconnection from the
standby database to flush the workload and cardinality statistics to the system tables.

If the standby database is modified, you receive the following messages when you try to restart Hot Standby
replication operations:

%RDMS−F−DBMODIFIED, database has been modified; AIJ roll−forward not possible
%RMU−F−FATALRDB, Fatal error while accessing Oracle Rdb.

Workaround

To work around this problem, perform the following:

On the master database, disable workload collection using the SQL clause WORKLOAD
COLLECTION IS DISABLED on the ALTER DATABASE statement. For example:

•

Oracle® Rdb for OpenVMS

8.1.48 Oracle Rdb Workload Collection Can Stop Hot Standby Replication 149

SQL> ALTER DATABASE FILE mf_personnel
cont> WORKLOAD COLLECTION IS DISABLED;

This change is propagated to the standby database automatically when you restore the standby
database and restart replication operations. Note that, by default, the workload collection feature is
disabled. You need to disable workload collection only if you previously enabled workload collection
with the WORKLOAD COLLECTION IS ENABLED clause.
On the standby database, include the Transaction_Mode qualifier on the RMU/Restore command
when you restore the standby database. You should set this qualifier to read−only to prevent
modifications to the standby database when replication operations are not active. The following
example shows the Transaction_Mode qualifier used in a typical RMU/Restore command:

$ RMU/RESTORE /TRANSACTION_MODE=READ_ONLY
 /NOCDD
 /NOLOG
 /ROOT=DISK1:[DIR]standby_personnel.rdb
 /AIJ_OPT=aij_opt.dat
 DISK1:[DIR]standby_personnel.rbf

•

If, in the future, you fail over processing to the standby database (so that the standby database becomes the
master database), you can re−enable updates to the "new" master database. For example, to re−enable updates,
use the SQL statement ALTER DATABASE and include the SET TRANSACTION MODES (ALL) clause.
The following example shows this statement used on the new master database:

SQL> ALTER DATABASE FILE mf_personnel
cont> SET TRANSACTION MODES (ALL);

8.1.49 RMU Convert Command and System Tables

When the RMU Convert command converts a database from a previous version to Oracle Rdb V7.0 or
higher, it sets the RDB$CREATED and RDB$LAST_ALTERED columns to the timestamp of the convert
operation.

The RDB$xxx_CREATOR columns are set to the current user name (which is space filled) of the converter.
Here xxx represents the object name, such as in RDB$TRIGGER_CREATOR.

The RMU Convert command also creates the new index on RDB$TRANSFER_RELATIONS if the database
is transfer enabled.

8.1.50 Converting Single−File Databases

Because of a substantial increase in the database root file information for Release 7.0, you should ensure that
you have adequate disk space before you use the RMU Convert command with single−file databases and
Release 7.0 or higher.

The size of the database root file of any given database will increase a minimum of 13 blocks and a maximum
of 597 blocks. The actual increase depends mostly on the maximum number of users specified for the
database.

Oracle® Rdb for OpenVMS

8.1.49 RMU Convert Command and System Tables 150

8.1.51 Restriction when Adding Storage Areas with Users
Attached to Database

If you try to interactively add a new storage area where the page size is smaller than the smallest existing
page size and the database has been manually opened or users are active, the add operation fails with the
following error:

%RDB−F−SYS_REQUEST, error from system services request
−RDMS−F−FILACCERR, error opening database root DKA0:[RDB]TEST.RDB;1
−SYSTEM−W−ACCONFLICT, file access conflict

You can make this change only when no users are attached to the database and, if the database is set to OPEN
IS MANUAL, the database is closed. Several internal Oracle Rdb data structures are based on the minimum
page size, and these structures cannot be resized if users are attached to the database.

Furthermore, because this particular change is not recorded in the AIJ file, any recovery scenario will fail.
Note also that if you use .aij files, you must backup the database and restart after−image journaling because
this change invalidates the current AIJ recovery.

8.1.52 Support for Single−File Databases to be Dropped in a
Future Release

Oracle Rdb currently supports both single−file and multifile databases on OpenVMS. However, single−file
databases will not be supported in a future release of Oracle Rdb. At that time, Oracle Rdb will provide the
means to easily convert single−file databases to multifile databases.

Oracle recommends that users with single−file databases perform the following actions:

Use the Oracle RMU commands, such as Backup and Restore, to make copies, back up, or move
single−file databases. Do not use operating system commands to copy, back up, or move databases.

•

Create new databases as multifile databases even though single−file databases are supported in Oracle
Rdb release 6.1 and release 7.0.

•

8.1.53 DECdtm Log Stalls

Resource managers using the DECdtm services can sometimes suddenly stop being able to commit
transactions. If Oracle Rdb is installed and transactions are being run, an RMU Show command on the
affected database will show transactions as being "stalled, waiting to commit".

Refer to the DECdtm documentation and release notes for information on symptoms, fixes, and workarounds
for this problem. One workaround, for OpenVMS V5.5−x, is provided here.

On the affected node while the log stall is in progress, type the following command from a privileged account:

$ MCR LMCP SET NOTIMEZONE

This should force the log to restart.

Oracle® Rdb for OpenVMS

8.1.51 Restriction when Adding Storage Areas with Users Attached to Database 151

This stall occurs only when a particular bit in a pointer field becomes set. To see the value of the pointer field,
enter the following command from a privileged account (where <nodename> is the SCS node name of the
node in question).

$ MCR LMCP DUMP/ACTIVE/NOFORM SYSTEM$<nodename>

This command displays output similar to the following:

Dump of transaction log SYS$COMMON:[SYSEXE]SYSTEM$<nodename>.LM$JOURNAL;1
End of file block 4002 / Allocated 4002
Log Version 1.0
Transaction log UID: 29551FC0−CBB7−11CC−8001−AA000400B7A5
Penultimate Checkpoint: 000013FD4479 0079
Last Checkpoint: 000013FDFC84 0084

Total of 2 transactions active, 0 prepared and 2 committed.

The stall will occur when bit 31 of the checkpoint address becomes set, as this excerpt from the previous
example shows:

 Last Checkpoint: 000013FDFC84 0084
 ^
 |

When the number indicated in the example becomes 8, the log will stall. Check this number and observe how
quickly it grows. When it is at 7FFF, frequently use the following command:

$ MCR LMCP SHOW LOG /CURRENT

If this command shows a stall in progress, use the workaround to restart the log.

See your HP Computer Corporation representative for information about patches to DECdtm.

8.1.54 Cannot Run Distributed Transactions on Systems
with DECnet/OSI and OpenVMS Alpha Version 6.1 or
OpenVMS VAX Version 6.0

If you have DECnet/OSI installed on a system with OpenVMS Alpha Version 6.1 or OpenVMS VAX
Version 6.0, you cannot run Oracle Rdb operations that require the two−phase commit protocol. The
two−phase commit protocol guarantees that if one operation in a distributed transaction cannot be completed,
none of the operations is completed.

If you have DECnet/OSI installed on a system running OpenVMS VAX Version 6.1 or higher or OpenVMS
Alpha Version 6.2 or higher, you can run Oracle Rdb operations that require the two−phase commit protocol.

For more information about the two−phase commit protocol, see the Oracle Rdb Guide to Distributed
Transactions.

Oracle® Rdb for OpenVMS

8.1.54 Cannot Run Distributed Transactions on Systems with DECnet/OSI and OpenVMS Alpha Version 6.1 or OpenVMS VAX Version 6.0152

8.1.55 Multiblock Page Writes May Require Restore
Operation

If a node fails while a multiblock page is being written to disk, the page in the disk becomes inconsistent and
is detected immediately during failover. (Failover is the recovery of an application by restarting it on another
computer.) The problem is rare and occurs because only single−block I/O operations are guaranteed by
OpenVMS to be written atomically. This problem has never been reported by any customer and was detected
only during stress tests in our labs.

Correct the page by an area−level restore operation. Database integrity is not compromised, but the affected
area will not be available until the restore operation completes.

A future release of Oracle Rdb will provide a solution that guarantees multiblock atomic write operations.
Cluster failovers will automatically cause the recovery of multiblock pages, and no manual intervention will
be required.

8.1.56 Replication Option Copy Processes Do Not Process
Database Pages Ahead of an Application

When a group of copy processes initiated by the Replication Option (formerly Data Distributor) begins
running after an application has begun modifying the database, the copy processes will catch up to the
application and will not be able to process database pages that are logically ahead of the application in the
RDB$CHANGES system table. The copy processes all align waiting for the same database page and do not
move on until the application has released it. The performance of each copy process degrades because it is
being paced by the application.

When a copy process completes updates to its respective remote database, it updates the RDB$TRANSFERS
system table and then tries to delete any RDB$CHANGES rows not needed by any transfers. During this
process, the RDB$CHANGES table cannot be updated by any application process, holding up any database
updates until the deletion process is complete. The application stalls while waiting for the RDB$CHANGES
table. The resulting contention for RDB$CHANGES SPAM pages and data pages severely impacts
performance throughput, requiring user intervention with normal processing.

This is a known restriction in Release 4.0 and higher. Oracle Rdb uses page locks as latches. These latches are
held only for the duration of an action on the page and not to the end of transaction. The page locks also have
blocking asynchronous system traps (ASTs) associated with them. Therefore, whenever a process requests a
page lock, the process holding that page lock is sent a blocking AST (BLAST) by OpenVMS. The process
that receives such a blocking AST queues the fact that the page lock should be released as soon as possible.
However, the page lock cannot be released immediately.

Such work requests to release page locks are handled at verb commit time. An Oracle Rdb verb is an Oracle
Rdb query that executes atomically, within a transaction. Therefore, verbs that require the scan of a large
table, for example, can be quite long. An updating application does not release page locks until its verb has
completed.

The reasons for holding on to the page locks until the end of the verb are fundamental to the database
management system.

Oracle® Rdb for OpenVMS

8.1.55 Multiblock Page Writes May Require Restore Operation 153

8.1.57 SQL Does Not Display Storage Map Definition After
Cascading Delete of Storage Area

When you delete a storage area using the CASCADE keyword and that storage area is not the only area to
which the storage map refers, the SHOW STORAGE MAP statement no longer shows the placement
definition for that storage map.

The following example demonstrates this restriction:

SQL> SHOW STORAGE MAP DEGREES_MAP1
 DEGREES_MAP1
 For Table: DEGREES1
 Compression is: ENABLED
 Partitioning is: NOT UPDATABLE
 Store clause: STORE USING (EMPLOYEE_ID)
 IN DEG_AREA WITH LIMIT OF ('00250')
 OTHERWISE IN DEG_AREA2

SQL> DISCONNECT DEFAULT;
SQL> −− Drop the storage area, using the CASCADE keyword.
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> DROP STORAGE AREA DEG_AREA CASCADE;
SQL> −−
SQL> −− Display the storage map definition.
SQL> ATTACH 'FILENAME MF_PERSONNEL';
SQL> SHOW STORAGE MAP DEGREES_MAP1
 DEGREES_MAP1
 For Table: DEGREES1
 Compression is: ENABLED
 Partitioning is: NOT UPDATABLE

SQL>

The other storage area, DEG_AREA2, still exists, even though the SHOW STORAGE MAP statement does
not display it.

A workaround is to use the RMU Extract command with the Items=Storage_Map qualifier to see the mapping.

8.1.58 ARITH_EXCEPT or Incorrect Results Using LIKE
IGNORE CASE

When you use LIKE...IGNORE CASE, programs linked under Oracle Rdb Release 4.2 and Release 5.1, but
run under higher versions of Oracle Rdb, may result in incorrect results or %RDB−E−ARITH_EXCEPT
exceptions.

To work around the problem, avoid using IGNORE CASE with LIKE, or recompile and relink under a higher
version (Release 6.0 or higher.)

8.1.59 Different Methods of Limiting Returned Rows from
Queries

Oracle® Rdb for OpenVMS

8.1.57 SQL Does Not Display Storage Map Definition After Cascading Delete of Storage Area 154

You can establish the query governor for rows returned from a query by using the SQL SET QUERY LIMIT
statement, a logical name, or a configuration parameter. This note describes the differences between the
mechanisms.

If you define the RDMS$BIND_QG_REC_LIMIT logical name or RDB_BIND_QG_REC_LIMIT
configuration parameter to a small value, the query will often fail with no rows returned. The
following example demonstrates setting the limit to 10 rows and the resulting failure:

$ DEFINE RDMS$BIND_QG_REC_LIMIT 10
$ SQL$
SQL> ATTACH 'FILENAME MF_PERSONNEL';
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
%RDB−F−EXQUOTA, Oracle Rdb runtime quota exceeded
−RDMS−E−MAXRECLIM, query governor maximum limit of rows has been reached

Interactive SQL must load its metadata cache for the table before it can process the SELECT
statement. In this example, interactive SQL loads its metadata cache to allow it to check that the
column EMPLOYEE_ID really exists for the table. The queries on the Oracle Rdb system tables
RDB$RELATIONS and RDB$RELATION_FIELDS exceed the limit of rows.
Oracle Rdb does not prepare the SELECT statement, let alone execute it. Raising the limit to a
number less than 100 (the cardinality of EMPLOYEES) but more than the number of columns in
EMPLOYEES (that is, the number of rows to read from the RDB$RELATION_FIELDS system
table) is sufficient to read each column definition.
To see an indication of the queries executed against the system tables, define the
RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS configuration parameter as S
or B.

•

If you set the row limit using the SQL SET QUERY statement and run the same query, it returns the
number of rows specified by the SQL SET QUERY statement before failing:

SQL> ATTACH 'FILENAME MF_PERSONNEL';
SQL> SET QUERY LIMIT ROWS 10;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
EMPLOYEE_ID
00164
00165

.

.

.
00173
%RDB−E−EXQUOTA, Oracle Rdb runtime quota exceeded
−RDMS−E−MAXRECLIM, query governor maximum limit of rows has been reached

The SET QUERY LIMIT specifies that only user queries be limited to 10 rows. Therefore, the queries
used to load the metadata cache are not restricted in any way.
Like the SET QUERY LIMIT statement, the SQL precompiler and module processor command line
qualifiers (QUERY_MAX_ROWS and SQLOPTIONS=QUERY_MAX_ROWS) only limit user
queries.

•

Keep the differences in mind when limiting returned rows using the logical name
RDMS$BIND_QG_REC_LIMIT or the configuration parameter RDB_BIND_QG_REC_LIMIT. They may
limit more queries than are obvious. This is important when using 4GL tools, the SQL precompiler, the SQL
module processor, and other interfaces that read the Oracle Rdb system tables as part of query processing.

Oracle® Rdb for OpenVMS

8.1.57 SQL Does Not Display Storage Map Definition After Cascading Delete of Storage Area 155

8.1.60 Suggestions for Optimal Usage of the SHARED DATA
DEFINITION Clause for Parallel Index Creation

The CREATE INDEX process involves the following steps:

Process the metadata.1.
Lock the index name.
Because new metadata (which includes the index name) is not written to disk until the end of the
index process, Oracle Rdb must ensure index name uniqueness across the database during this time by
taking a special lock on the provided index name.

2.

Read the table for sorting by selected index columns and ordering.3.
Sort the key data.4.
Build the index (includes partitioning across storage areas).5.
Write new metadata to disk.6.

Step 6 is the point of conflict with other index definers because the system table and indexes are locked like
any other updated table.

Multiple users can create indexes on the same table by using the RESERVING table_name FOR SHARED
DATA DEFINITION clause of the SET TRANSACTION statement. For optimal usage of this capability,
Oracle Rdb suggests the following guidelines:

You should commit the transaction immediately after the CREATE INDEX statement so that locks on
the table are released. This avoids lock conflicts with other index definers and improves overall
concurrency.

•

By assigning the location of the temporary sort work files SORTWORK0, SORTWORK1, ...,
SORTWORK9 to different disks for each parallel process that issues the SHARED DATA
DEFINITION statement, you can increase the efficiency of sort operations. This minimizes any
possible disk I/O bottlenecks and allows overlap of the SORT read/write cycle.

•

If possible, enable global buffers and specify a buffer number large enough to hold a sufficient
amount of table data. However, do not define global buffers larger than the available system physical
memory. Global buffers allow sharing of database pages and thus result in disk I/O savings. That is,
pages are read from disk by one of the processes and then shared by the other index definers for the
same table, reducing the I/O load on the table.

•

If global buffers are not used, ensure that enough local buffers exist to keep much of the index cached
(use the RDM$BIND_BUFFERS logical name or RDB_BIND_BUFFERS configuration parameter or
the NUMBER OF BUFFERS IS clause in SQL to change the number of buffers).

•

To distribute the disk I/O load, place the storage areas for the indexes on separate disk drives. Note
that using the same storage area for multiple indexes will result in contention during the index
creation (Step 5) for SPAM pages.

•

Consider placing the .ruj file for each parallel definer on its own disk or an infrequently used disk.•
Even though snapshot I/O should be minimal, consider disabling snapshots during parallel index
creation.

•

Refer to the Oracle Rdb Guide to Performance and Tuning to determine the appropriate working set
values for each process to minimize excessive paging activity. In particular, avoid using working set
parameters where the difference between WSQUOTA and WSEXTENT is large. The SORT utility
uses the difference between these two values to allocate scratch virtual memory. A large difference
(that is, the requested virtual memory grossly exceeds the available physical memory) may lead to
excessive page faulting.

•

Oracle® Rdb for OpenVMS

8.1.60 Suggestions for Optimal Usage of the SHARED DATA DEFINITION Clause for Parallel Index Creation156

The performance benefits of using SHARED DATA DEFINITION can best be observed when
creating many indexes in parallel. The benefit is in the average elapsed time, not in CPU or I/O usage.
For example, when two indexes are created in parallel using the SHARED DATA DEFINITION
clause, the database must be attached twice, and the two attaches each use separate system resources.

•

Using the SHARED DATA DEFINITION clause on a single−file database or for indexes defined in
the RDB$SYSTEM storage area is not recommended.

•

The following table displays the elapsed time benefit when creating multiple indexes in parallel with the
SHARED DATA DEFINITION clause. The table shows the elapsed time for 10 parallel process index
creations (Index1, Index2,...Index10) and one process with 10 sequential index creations (All10). In this
example, global buffers are enabled and the number of buffers is 500. The longest time for a parallel index
creation is Index7 with an elapsed time of 00:02:34.64, compared to creating 10 indexes sequentially with an
elapsed time of 00:03:26.66. The longest single parallel create index elapsed time is shorter than the elapsed
time of creating all 10 of the indexes serially.

Index Create Job Elapsed Time

Index1 00:02:22.50

Index2 00:01:57.94

Index3 00:02:06.27

Index4 00:01:34.53

Index5 00:01:51.96

Index6 00:01:27.57

Index7 00:02:34.64

Index8 00:01:40.56

Index9 00:01:34.43

Index10 00:01:47.44

All 10 00:03:26.66

8.1.61 Side Effect when Calling Stored Routines

When calling a stored routine, you must not use the same routine to calculate argument values by a stored
function. For example, if the routine being called is also called by a stored function during the calculation of
an argument value, passed arguments to the routine may be incorrect.

The following example shows a stored procedure P being called during the calculation of the arguments for
another invocation of the stored procedure P:

SQL> CREATE MODULE M
cont> LANGUAGE SQL
cont>
cont> PROCEDURE P (IN :A INTEGER, IN :B INTEGER, OUT :C INTEGER);
cont> BEGIN
cont> SET :C = :A + :B;
cont> END;
cont>
cont> FUNCTION F () RETURNS INTEGER
cont> COMMENT IS 'expect F to always return 2';
cont> BEGIN
cont> DECLARE :B INTEGER;

Oracle® Rdb for OpenVMS

8.1.61 Side Effect when Calling Stored Routines 157

cont> CALL P (1, 1, :B);
cont> TRACE 'RETURNING ', :B;
cont> RETURN :B;
cont> END;
cont> END MODULE;
SQL>
SQL> SET FLAGS 'TRACE';
SQL> BEGIN
cont> DECLARE :CC INTEGER;
cont> CALL P (2, F(), :CC);
cont> TRACE 'Expected 4, got ', :CC;
cont> END;
~Xt: returning 2
~Xt: Expected 4, got 3

The result as shown above is incorrect. The routine argument values are written to the called routine's
parameter area before complex expression values are calculated. These calculations may (as in the example)
overwrite previously copied data.

The workaround is to assign the argument expression (in this example calling the stored function F) to a
temporary variable and pass this variable as the input for the routine. The following example shows the
workaround:

SQL> BEGIN
cont> DECLARE :BB, :CC INTEGER;
cont> SET :BB = F();
cont> CALL P (2, :BB, :CC);
cont> TRACE 'Expected 4, got ', :CC;
cont> END;
~Xt: returning 2
~Xt: Expected 4, got 4

This problem will be corrected in a future version of Oracle Rdb.

8.1.62 Considerations when Using Holdable Cursors

If your applications use holdable cursors, be aware that after a COMMIT or ROLLBACK statement is
executed, the result set selected by the cursor may not remain stable. That is, rows may be inserted, updated,
and deleted by other users because no locks are held on the rows selected by the holdable cursor after a
commit or rollback occurs. Moreover, depending on the access strategy, rows not yet fetched may change
before Oracle Rdb actually fetches them.

As a result, you may see the following anomalies when using holdable cursors in a concurrent user
environment:

If the access strategy forces Oracle Rdb to take a data snapshot, the data read and cached may be
inaccurate by the time the cursor fetches the data.
For example, user 1 opens a cursor and commits the transaction. User 2 deletes rows read by user 1
(this is possible because the read locks are released). It is possible for user 1 to report data now
deleted and committed.

•

If the access strategy uses indexes that allow duplicates, updates to the duplicates chain may cause
rows to be skipped, or even revisited.
Oracle Rdb keeps track of the dbkey in the duplicate chain pointing to the data that was fetched.
However, the duplicates chain could be revised by the time Oracle Rdb returns to using it.

•

Oracle® Rdb for OpenVMS

8.1.62 Considerations when Using Holdable Cursors 158

Holdable cursors are a very powerful feature for read−only or predominantly read−only environments.
However, in concurrent update environments, the instability of the cursor may not be acceptable. The stability
of holdable cursors for update environments will be addressed in future versions of Oracle Rdb.

You can define the logical name RDMS$BIND_HOLD_CURSOR_SNAP or configuration parameter
RDB_BIND_HOLD_CURSOR_SNAP to the value 1 to force all hold cursors to fetch the result set into a
cached data area. (The cached data area appears as a "Temporary Relation" in the optimizer strategy displayed
by the SET FLAGS STRATEGY statement or the RDMS$DEBUG_FLAGS S flag.) This logical name or
configuration parameter helps to stabilize the cursor to some degree.

8.1.63 INCLUDE SQLDA2 Statement Is Not Supported for
SQL Precompiler for PL/I in Oracle Rdb Release 5.0 or
Higher

The SQL statement INCLUDE SQLDA2 is not supported for use with the PL/I precompiler in Oracle Rdb
Release 5.0 or higher.

There is no workaround. This problem will be fixed in a future version of Oracle Rdb.

8.1.64 SQL Pascal Precompiler Processes ARRAY OF
RECORD Declarations Incorrectly

The Pascal precompiler for SQL gives an incorrect %SQL−I−UNMATEND error when it parses a
declaration of an array of records. The precompiler does not associate the END statement with the record
definition, and the resulting confusion in host variable scoping causes a fatal error.

A workaround for the problem is to declare the record as a type and then define your array of that type. For
example:

 main.spa:

 program main (input,output);

 type
 exec sql include 'bad_def.pin'; !gives error
 exec sql include 'good_def.pin'; !ok
 var
 a : char;

 begin
 end.

−−−
 bad_def.pin

 x_record = record
 y : char;
 variable_a: array [1..50] of record
 a_fld1 : char;
 b_fld2 : record;
 t : record

Oracle® Rdb for OpenVMS

8.1.63 INCLUDE SQLDA2 Statement Is Not Supported for SQL Precompiler for PL/I in Oracle Rdb Release 5.0 or Higher159

 v : integer;
 end;
 end;
 end;
 end;
 −−−

 good_def.pin

good_rec = record
 a_fld1 : char;
 b_fld2 : record
 t : record
 v: integer;
 end;
 end;
end;

 x_record = record
 y : char
 variable_a : array [1..50] of good_rec;
 end;

8.1.65 RMU Parallel Backup Command Not Supported for
Use with SLS

The RMU Parallel Backup command is not supported for use with the Storage Library System (SLS) for
OpenVMS.

Oracle® Rdb for OpenVMS

8.1.65 RMU Parallel Backup Command Not Supported for Use with SLS 160

8.2 Oracle CDD/Repository Restrictions
This section describes known problems and restrictions in Oracle CDD/Repository Release 7.0 and earlier.

8.2.1 Oracle CDD/Repository Compatibility with Oracle Rdb
Features

Some Oracle Rdb features are not fully supported by all versions of Oracle CDD/Repository. Table 8−1
shows which versions of Oracle CDD/Repository support Oracle Rdb features and the extent of support.

In Table 8−1, repository support for Oracle Rdb features can vary as follows:

Explicit support−−−The repository recognizes and integrates the feature, and you can use the
repository to manipulate the item.

•

Implicit support−−−The repository recognizes and integrates the feature, but you cannot use any
repository interface to manipulate the item.

•

Pass−through support−−−The repository does not recognize or integrate the feature, but allows the
Oracle Rdb operation to complete without aborting or overwriting metadata. With pass−through
support, a CDD−I−MBLRSYNINFO informational message may be returned.

•

Table 8−1 Oracle CDD/Repository Compatibility for Oracle Rdb Features

Oracle Rdb Feature
Minimum
Release of

Oracle Rdb

Minimum Release of
Oracle CDD/Repository

Support

CASE, NULLIF, and COALESCE expressions6.0 6.1 Implicit

CAST function 4.1 7.0 Explicit

Character data types to support character sets4.2 6.1 Implicit

Collating sequences 3.1 6.1 Explicit

Constraints (PRIMARY KEY, UNIQUE, NOT
NULL, CHECK, FOREIGN KEY)

3.1 5.2 Explicit

CURRENT_DATE, CURRENT_TIME, and
CURRENT_TIMESTAMP functions

4.1 7.0 Explicit

CURRENT_USER, SESSION_USER,
SYSTEM_USER functions

6.0 7.0 Explicit

Date arithmetic 4.1 6.1 Pass−through

DATE ANSI, TIME, TIMESTAMP, and
INTERVAL data types

4.1 6.1 Explicit

Delimited identifiers 4.2 6.1¹ Explicit

External functions 6.0 6.1 Pass−through

External procedures 7.0 6.1 Pass−through

EXTRACT, CHAR_LENGTH, and
OCTET_LENGTH functions

4.1 6.1 Explicit

GRANT/REVOKE privileges 4.0 Pass−through

8.2 Oracle CDD/Repository Restrictions 161

5.0 accepts but does not
store information

Indexes 1.0 5.2 Explicit

INTEGRATE DOMAIN 6.1 6.1 Explicit

INTEGRATE TABLE 6.1 6.1 Explicit

Logical area thresholds for storage maps and
indexes

4.1 5.2 Pass−through

Multinational character set 3.1 4.0 Explicit

Multiversion environment (multiple Rdb
versions)

4.1 5.1 Explicit

NULL keyword 2.2 7.0 Explicit

Oracle7 compatibility functions, such as
CONCAT, CONVERT, DECODE, and
SYSDATE

7.0 7.0 Explicit

Outer joins, derived tables 6.0 7.0 Pass−through

Query outlines 6.0 6.1 Pass−through

Storage map definitions correctly restored 3.0 5.1 Explicit

Stored functions 7.0 6.1 Pass−through

Stored procedures 6.0 6.1 Pass−through

SUBSTRING function 4.0
7.0 supports all features
5.0 supports all but 4.2
MIA features ²

Explicit

Temporary tables 7.0 6.1 Pass−through

Triggers 3.1 5.2 Pass−through

TRUNCATE TABLE 7.0 6.1 Pass−through

TRIM and POSITION functions 6.1 7.0 Explicit

UPPER, LOWER, TRANSLATE functions 4.2 7.0 Explicit

USER function 2.2 7.0 Explict

¹The repository does not preserve the distinction between uppercase and lowercase identifiers. If you use
delimited identifiers with Oracle Rdb, the repository ensures that the record definition does not include objects
with names that are duplicates except for case.
²Multivendor Integration Architecture (MIA) features include the CHAR_LENGTH clause and the
TRANSLATE function.

8.2.2 Multischema Databases and CDD/Repository

You cannot use multischema databases with CDD/Repository and Oracle Rdb release 7.0 and earlier. This
problem will be corrected in a future release of Oracle Rdb.

8.2.3 Interaction of Oracle CDD/Repository Release 5.1 and
Oracle RMU Privileges Access Control Lists

Oracle® Rdb for OpenVMS

8.2.2 Multischema Databases and CDD/Repository 162

Oracle Rdb provides special Oracle RMU privileges that use the unused portion of the OpenVMS access
control list (ACL) to manage access to Oracle RMU operations.

You can use the RMU Set Privilege and RMU Show Privilege commands to set and show the Oracle RMU
privileges. The DCL SHOW ACL and DIRECTORY/ACL commands also show the added access control
information; however, these tools cannot translate the names defined by Oracle Rdb.

Note

The RMU Convert command propagates the database internal ACL to the root file for
access control entries (ACEs) that possess the SECURITY and DBADM
(ADMINISTRATOR) privileges.

Oracle CDD/Repository protects its repository (dictionary) by placing the CDD$SYSTEM rights identifier on
each file created within the anchor directory. CDD$SYSTEM is a special, reserved rights identifier created by
Oracle CDD/Repository.

When Oracle CDD/Repository executes the DEFINE REPOSITORY command, it adds (or augments) an
OpenVMS default ACL to the anchor directory. Typically, this ACL allows access to the repository files for
CDD$SYSTEM and denies access to everyone else. All files created in the anchor directory inherit this
default ACL, including the repository database.

Unfortunately, there is an interaction between the default ACL placed on the repository database by Oracle
CDD/Repository and the Oracle RMU privileges ACL processing.

Within the ACL on the repository database, the default access control entries (ACEs) that were inherited from
the anchor directory will precede the ACEs added by RMU Restore. As a result, the CDD$SYSTEM identifier
will not have any Oracle RMU privileges granted to it. Without these privileges, if the user does not have the
OpenVMS SYSPRV privilege enabled, Oracle RMU operations, such as Convert and Restore, will not be
allowed on the repository database.

The following problems may be observed by users who do not have the SYSPRV privilege enabled:

While executing a CDO DEFINE REPOSITORY or DEFINE DICTIONARY command:
If the CDD$TEMPLATEDB backup (.rbf) file was created by a previous version of Oracle
Rdb, the automatic RMU Convert operation that will be carried out on the .rbf file will fail
because SYSPRV privilege is required.

♦

If the CDD$TEMPLATEDB backup (.rbf) file was created by the current version of Oracle
Rdb, the restore of the repository database will fail because the default ACEs that already
existed on the repository file that was backed up will take precedence, preventing
RMU$CONVERT and RMU$RESTORE privileges from being granted to CDD$SYSTEM or
the user.

♦

If no CDD$TEMPLATEDB is available, the repository database will be created without a
template, inheriting the default ACL from the parent directory. The ACE containing all the
required Oracle RMU privileges will be added to the end of the ACL; however, the
preexisting default ACEs will prevent any Oracle RMU privilege from being granted.

♦

•

You must use the RMU Convert command to upgrade the database disk format to Oracle Rdb after
installing Release 7.0. This operation requires the SYSPRV privilege.
During the conversion, RMU Convert adds the ACE containing the Oracle RMU privileges at the end
of the ACL. Because the repository database already has the default Oracle CDD/Repository ACL

•

Oracle® Rdb for OpenVMS

8.2.2 Multischema Databases and CDD/Repository 163

associated with it, the Oracle CDD/Repository ACL will take precedence, preventing the granting of
the Oracle RMU privileges.
During a CDO MOVE REPOSITORY command, the Oracle RMU privilege checking may prevent
the move, as the RMU$COPY privilege has not been granted on the repository database.

•

When you execute the CDD template builder CDD_BUILD_TEMPLATE, the step involving RMU
Backup privilege has not been granted.

•

Oracle CDD/Repository Releases 5.2 and higher correct this problem. A version of the Oracle
CDD/Repository software that corrects this problem and allows new repositories to be created using Oracle
Rdb is provided on the Oracle Rdb kit for use on OpenVMS VAX systems. See Section 8.2.3.1 for details.

8.2.3.1 Installing the Corrected CDDSHR Images

OpenVMS VAX Systems

Note

The following procedure must be carried out if you have installed or plan to install Oracle
Rdb and have already installed CDD/Repository Release 5.1 software on your system.

Due to the enhanced security checking associated with Oracle RMU commands in Oracle Rdb on OpenVMS
VAX, existing CDDSHR images for CDD/Repository Release 5.1 must be upgraded to ensure that the correct
Oracle RMU privileges are applied to newly created or copied repository databases.

Included in the Oracle Rdb for OpenVMS VAX distribution kit is a CDD upgraded image kit, called
CDDRDB042, that must be installed after you have installed the Oracle Rdb for OpenVMS VAX kit.

This upgrade kit should be installed by using VMSINSTAL. It automatically checks which version of
CDDSHR you have installed and replaces the existing CDDSHR.EXE with the corrected image file. The
existing CDDSHR.EXE will be renamed SYS$LIBRARY:OLD_CDDSHR.EXE.

The upgrade installation will also place a new CDD_BUILD_TEMPLATE.COM procedure in
SYS$LIBRARY for use with CDD/Repository V5.1.

Note

If you upgrade your repository to CDD/Repository V5.1 after you install Oracle Rdb V7.0,
you must install the corrected CDDSHR image again to ensure that the correct CDDSHR
images have been made available.

The CDD/Repository upgrade kit determines which version of CDD/Repository is installed
and replaces the existing CDDSHR.EXE with the appropriate version of the corrected
image.

8.2.3.2 CDD Conversion Procedure

OpenVMS VAX Systems

Oracle® Rdb for OpenVMS

8.2.3.1 Installing the Corrected CDDSHR Images 164

Oracle Rdb provides RDB$CONVERT_CDD$DATABASE.COM, a command procedure that both corrects
the anchor directory ACL and performs the RMU Convert operation. The command procedure is located in
SYS$LIBRARY.

Note

You must have SYSPRV enabled before you execute the procedure
RDB$CONVERT_CDD$DATABASE.COM because the procedure performs an RMU
Convert operation.

Use the procedure RDB$CONVERT_CDD$DATABASE.COM to process the anchor directory and update
the ACLs for both the directory and, if available, the repository database.

This procedure accepts one parameter: the name of the anchor directory that contains, or will contain, the
repository files. For example:

$ @SYS$LIBRARY:DECRDB$CONVERT_CDD$DATABASE [PROJECT.CDD_REP]

If many repositories exist on a system, you may want to create a DCL command procedure to locate them, set
the Oracle RMU privileges ACL, and convert the databases. Use DCL commands similar to the following:

$ LOOP:
$ REP_SPEC = F$SEARCH("[000000...]CDD$DATABASE.RDB")
$ IF REP_SPEC .NES. ""
$ THEN
$ @SYS$LIBRARY:DECRDB$CONVERT_CDD$DATABASE −
 'F$PARSE(REP_SPEC,,,"DIRECTORY")'
$ GOTO LOOP
$ ENDIF

| Contents

Oracle® Rdb for OpenVMS

8.2.3.1 Installing the Corrected CDDSHR Images 165

	Table of Contents
	Oracle® Rdb for OpenVMS
	Release Notes
	September 2005
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Document Structure
	Chapter 1Installing Oracle Rdb Release 7.0.8.2
	1.1 Requirements
	1.2 Invoking VMSINSTAL
	1.3 Stopping the Installation
	1.4 After Installing Oracle Rdb
	1.5 Spurious SYSVERDIF Message During Installation
	1.6 Maximum OpenVMS Version Check Added
	Chapter 2Software Errors Fixed in Oracle Rdb Release 7.0.8.2
	2.1 Software Errors Fixed That Apply to All Interfaces
	2.1.1 Journals Not Initialized After Backup if Backing Up to Tape Device
	2.1.2 Wrong Result From UNION Query With Outer Join Leg
	2.1.3 COSI_MEM_FREE_VMLIST Bugcheck with Vertical Partitioning
	2.1.4 Bugcheck from INSERT with Partition Index
	2.1.5 Wrong Result from Constant View Column
	2.1.6 Wrong Result from UNION View Query with NOT STARTING WITH Clause
	2.1.7 Unexpected Bugcheck when Formatting Illegal Date/Time Value
	2.1.8 Wrong Result by Query with Constant Column Defined in a View
	2.1.9 Bugchecks or Corruption in Indexes of TYPE IS SORTED RANKED

	2.2 Oracle RMU Errors Fixed
	2.2.1 RMU /UNLOAD Output File Maximum Record Size

	2.3 LogMiner Errors Fixed
	2.3.1 RMU /UNLOAD /AFTER_JOURNAL Field Order Clarification

	Chapter 3Software Errors Fixed in Oracle Rdb Release 7.0.8.1
	3.1 Software Errors Fixed That Apply to All Interfaces
	3.1.1 Problem with Rdb 7.0.8 and VMS Versions Below V7.1
	3.1.2 Wrong Results Generated by Query With Common Boolean Elements
	3.1.3 Query With Shared Expressions in OR Predicates Returns Wrong Result
	3.1.4 Various Errors or Corruption of Ranked Indexes
	3.1.5 Wrong Result From Query With Common Join Booleans in OR
	3.1.6 Wrong Result Selecting From a Derived Table of UNION Clause
	3.1.7 Incorrect Foreign Key Constraint Behavior on Update
	3.1.8 Bugchecks in PSII2SPLITNODE When Using Ranked Indexes
	3.1.9 Connection Name Longer than 31 Characters Mishandled

	3.2 SQL Errors Fixed
	3.2.1 Dynamic SQL Rounds Results from Division Operator

	3.3 LogMiner Errors Fixed
	3.3.1 RMU /UNLOAD /AFTER_JOURNAL Incorrect Settings in Null Bit Vector

	Chapter 4Enhancements Provided in Oracle Rdb Release 7.0.8.1
	4.1 Enhancements Provided in Oracle Rdb Release 7.0.8.1
	4.1.1 New DEFAULTS Qualifier Added to RMU Extract

	Chapter 5Enhancements Provided in Oracle Rdb Release 7.0.8
	5.1 Enhancements Provided in Oracle Rdb Release 7.0.8
	5.1.1 Support for OpenVMS Version 8.2
	5.1.2 RDM$BIND_SNAP_QUIET_POINT Logical Reinstated
	5.1.3 RMU Unload After_Journal/Ignore Old_Version Keyword
	5.1.4 New Features in RMU Extract
	RMU Extract Command
	DESCRIPTION
	COMMAND PARAMETERS
	root-file-spec

	COMMAND QUALIFIERS
	Items[=item-list]
	Language=lang-name
	Log[=log-file]
	Nolog
	Options=options-list
	Output=[out-file]
	Nooutput
	Transaction_Type[=(transaction_mode,options,...)]

	Usage Notes
	Examples

	Chapter 6Enhancements Provided in Previous Releases
	6.1 Enhancements Provided in Oracle Rdb Release 7.0.7.2
	6.1.1 Rdb Optional Site-Specific Startup Procedure
	6.1.2 Oracle Rdb SGA API
	6.1.3 CHRONO_FLAG Replaces Older CRONO_FLAG Keyword

	6.2 Enhancements Provided in Oracle Rdb Release 7.0.7.1
	6.2.1 RDM$BIND_SNAP_QUIET_POINT Logical No Longer Used
	6.2.2 Determining Which Oracle Rdb Options Are Installed
	6.2.3 New Procedure RDB$IMAGE_VERSIONS.COM

	Chapter 7Documentation Corrections
	7.1 Documentation Corrections
	7.1.1 Database Server Process Priority Clarification
	7.1.2 Waiting for Client Lock Message
	7.1.3 Clarification of PREPARE Statement Behavior
	7.1.4 SQL EXPORT Does Not Save Some Database Attributes
	7.1.5 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database Parameter
	7.1.6 New Request Options for RDO, RDBPRE and RDB$INTERPRET
	7.1.7 Missing Descriptions of RDB$FLAGS from HELP File
	7.1.8 A Way to Find the Transaction Type of a Particular Transaction Within the Trace Database
	7.1.9 Clarification of SET FLAGS Option DATABASE_PARAMETERS
	7.1.10 Additional Information About Detached Processes
	7.1.11 The Halloween Problem
	7.1.12 RDM$BIND_MAX_DBR_COUNT Documentation Clarification
	7.1.13 RMU /UNLOAD /AFTER_JOURNAL NULL Bit Vector Clarification
	7.1.14 Location of Host Source File Generated by the SQL Precompilers
	7.1.15 Suggestion to Increase GH_RSRVPGCNT Removed
	7.1.16 Clarification of the DDLDONOTMIX Error Message
	7.1.17 Compressed Sorted Index Entry Stored in Incorrect Storage Area
	7.1.18 Partition Clause is Optional on CREATE STORAGE MAP
	7.1.19 Oracle Rdb Logical Names
	7.1.20 Documentation Error in Oracle Rdb Guide to Database Performance and Tuning
	7.1.21 SET FLAGS Option IGNORE_OUTLINE Not Available
	7.1.22 SET FLAGS Option INTERNALS Not Described
	7.1.23 Documentation for VALIDATE_ROUTINE Keyword for SET FLAGS
	7.1.24 Documentation for Defining the RDBSERVER Logical Name
	7.1.25 Undocumented SET Commands and Language Options
	7.1.25.1 QUIET COMMIT Option
	7.1.25.2 COMPOUND TRANSACTIONS Option

	7.1.26 Undocumented Size Limit for Indexes with Keys Using Collating Sequences
	7.1.27 Changes to RMU/REPLICATE AFTER/BUFFERS Command
	7.1.28 Change in the Way RDMAIJ Server is Set Up in UCX
	7.1.29 CREATE INDEX Supported for Hot Standby
	7.1.30 Dynamic OR Optimization Formats

	Chapter 8Known Problems and Restrictions
	8.1 Oracle Rdb Considerations
	8.1.1 Some SQL92 Dialect-required Warnings Not Delivered
	8.1.2 Partitioned Index with Descending Column and Collating Sequence
	8.1.3 RDMS-E-RTNSBC_INITERR, Cannot Init External Routine Server Site Executor
	8.1.4 AIJ Log Server Process May Loop Or Bugcheck
	8.1.5 Optimization of Check Constraints
	8.1.6 Dynamic Optimization Estimation Incorrect for Ranked Indices
	8.1.7 Running Rdb Applications With the VMS Heap Analyzer
	8.1.8 RMU/RECOVER/AREA Needs Area List
	8.1.9 PAGE TRANSFER VIA MEMORY Disabled
	8.1.10 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors
	8.1.11 Behavior Change in 'With System Logical_Name Translation' Clause
	8.1.12 Carry-Over Locks and NOWAIT Transactions Clarification
	8.1.13 Strict Partitioning May Scan Extra Partitions
	8.1.14 Exclusive Access Transactions May Deadlock With RCS Process
	8.1.15 Oracle Rdb and OpenVMS ODS-5 Volumes
	8.1.16 Clarification of the USER Impersonation Provided by the Oracle Rdb Server
	8.1.17 Index STORE Clause WITH LIMIT OF Not Enforced in Single Partition Map
	8.1.18 Unexpected NO_META_UPDATE Error Generated by DROP MODULE ... CASCADE When Attached by PATHNAME
	8.1.19 Application and Oracle Rdb Both Using SYS$HIBER
	8.1.20 IMPORT Unable to Import Some View Definitions
	8.1.21 AIJSERVER Privileges
	8.1.22 Lock Remastering and Hot Standby
	8.1.23 RDB_SETUP Privilege Error
	8.1.24 Starting Hot Standby on Restored Standby Database May Corrupt Database
	8.1.25 Restriction on Compound Statement Nesting Levels
	8.1.26 Back Up All AIJ Journals Before Performing a Hot Standby Switchover Operation
	8.1.27 Concurrent DDL and Read-Only Transaction on the Same Table Not Compatible
	8.1.28 Oracle Rdb and the SRM_CHECK Tool
	8.1.29 Oracle RMU Checksum_Verification Qualifier
	8.1.30 Do Not Use HYPERSORT with RMU/OPTIMIZE/AFTER_JOURNAL (Alpha)
	8.1.31 Restriction on Using /NOONLINE with Hot Standby
	8.1.32 SELECT Query May Bugcheck with PSII2SCANGETNEXTBBCDUPLICATE Error
	8.1.33 DBAPack for Windows 3.1 is Deprecated
	8.1.34 Determining Mode for SQL Non-Stored Procedures
	8.1.35 DROP TABLE CASCADE Results in %RDB-E-NO_META_UPDATE Error
	8.1.36 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL
	8.1.37 Interruptions Possible when Using Multistatement or Stored Procedures
	8.1.38 Row Cache Not Allowed on Standby Database While Hot Standby Replication Is Active
	8.1.39 Hot Standby Replication Waits when Starting if Read-Only Transactions Running
	8.1.40 Error when Using the SYS$LIBRARY:SQL_FUNCTIONS70.SQL Oracle Functions Script
	8.1.41 DEC C and Use of the /STANDARD Switch
	8.1.42 Excessive Process Page Faults and Other Performance Considerations During Oracle Rdb Sorts
	8.1.43 Performance Monitor Column Mislabeled
	8.1.44 Restriction Using Backup Files Created Later than Oracle Rdb Release 7.0.1
	8.1.45 RMU Backup Operations and Tape Drive Types
	8.1.46 Use of Oracle Rdb from Shared Images
	8.1.47 Restriction Added for CREATE STORAGE MAP on Table with Data
	8.1.48 Oracle Rdb Workload Collection Can Stop Hot Standby Replication
	8.1.49 RMU Convert Command and System Tables
	8.1.50 Converting Single-File Databases
	8.1.51 Restriction when Adding Storage Areas with Users Attached to Database
	8.1.52 Support for Single-File Databases to be Dropped in a Future Release
	8.1.53 DECdtm Log Stalls
	8.1.54 Cannot Run Distributed Transactions on Systems with DECnet/OSI and OpenVMS Alpha Version 6.1 or OpenVMS VAX Version 6.0
	8.1.55 Multiblock Page Writes May Require Restore Operation
	8.1.56 Replication Option Copy Processes Do Not Process Database Pages Ahead of an Application
	8.1.57 SQL Does Not Display Storage Map Definition After Cascading Delete of Storage Area
	8.1.58 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE
	8.1.59 Different Methods of Limiting Returned Rows from Queries
	8.1.60 Suggestions for Optimal Usage of the SHARED DATA DEFINITION Clause for Parallel Index Creation
	8.1.61 Side Effect when Calling Stored Routines
	8.1.62 Considerations when Using Holdable Cursors
	8.1.63 INCLUDE SQLDA2 Statement Is Not Supported for SQL Precompiler for PL/I in Oracle Rdb Release 5.0 or Higher
	8.1.64 SQL Pascal Precompiler Processes ARRAY OF RECORD Declarations Incorrectly
	8.1.65 RMU Parallel Backup Command Not Supported for Use with SLS

	8.2 Oracle CDD/Repository Restrictions
	8.2.1 Oracle CDD/Repository Compatibility with Oracle Rdb Features
	8.2.2 Multischema Databases and CDD/Repository
	8.2.3 Interaction of Oracle CDD/Repository Release 5.1 and Oracle RMU Privileges Access Control Lists
	8.2.3.1 Installing the Corrected CDDSHR Images
	8.2.3.2 CDD Conversion Procedure

